Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Int J Biol Macromol ; 280(Pt 4): 136058, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341308

ABSTRACT

The review examined the potential of starch-based drug delivery systems for managing breast cancer efficiently. It covered the background of breast cancer and the significance of drug delivery systems in treatment enhancement. Starch, known for its versatile physicochemical properties, was explored as a promising biopolymer for drug delivery. The review detailed the properties of starch relevant to drug delivery, synthesis methods, and characterization approaches. It discussed the application of starch-based systems in breast cancer treatment, focusing on their role in improving chemotherapy delivery. The advantages and limitations of these systems, such as biocompatibility and drug loading capacity, were evaluated, along with future research directions in starch modification and emerging technologies. The review concluded by emphasizing the potential of starch-based drug delivery systems in improving breast cancer treatment outcomes.

2.
Prostaglandins Other Lipid Mediat ; 175: 106887, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243880

ABSTRACT

BACKGROUND & AIMS: Taking into account the anti-inflammatory and antioxidant properties of omega-3 fatty acids and the evidence indicating the role of chronic inflammation and oxidative stress in the pathophysiology diabetes, this study aimed to determine the effect of ω-3 fatty acids on oxidative stress and inflammatory markers in Type 2 diabetes mellitus (T2DM) patients. METHODS: A systematic search up to July 30, 2023 was completed in Scopus, PubMed, Web of Science, and Embase databases, to identify eligible RCTs. Heterogeneity tests of the selected studies were performed using the I2. Random effects models were assessed and pooled data were determined as standardized mean differences (SMD) with a 95 % CI. RESULTS: The meta-analysis of 23 trials, involving 1523 patients, demonstrated a significant decrease in TNF-α (SMD: -1.62, 95 % CI: -2.89 to -0.35, P= 0.013) and increase in TAC (SMD: 0.92, 95 % CI: 0.33-1.52, P = 0.002) following ω-3 fatty acids administration. Meanwhile, supplementation did not have beneficial effects on malondialdehyde, C-reactive protein (CRP), superoxide dismutase (SOD), and interlukin-6 levels. The subgroup analysis revealed a significant decrease in CRP levels and an increase in SOD levels in studies with durations of less than 12 weeks. CONCLUSIONS: We found that ω-3 fatty acid intake can significantly decrease TNF-α and increase TAC levels, but this effect was not observed on other markers. Nevertheless, future well-designed with large sample size and long duration RCT studies with precise ω-3 fatty acids dose and ingredients are required to understand better the effects of these compounds and their constituents on oxidative stress and inflammatory markers in T2DM patients.

3.
Sci Rep ; 14(1): 18039, 2024 08 04.
Article in English | MEDLINE | ID: mdl-39098877

ABSTRACT

Coronavirus has long been considered a global epidemic. It caused the deaths of nearly 7.01 million individuals and caused an economic downturn. The number of verified coronavirus cases is increasing daily, putting the whole human race at danger and putting strain on medical experts to eradicate the disease as rapidly as possible. As a consequence, it is vital to predict the upcoming coronavirus positive patients in order to plan actions in the future. Furthermore, it has been discovered all across the globe that asymptomatic coronavirus patients play a significant part in the disease's transmission. This prompted us to incorporate similar examples in order to accurately forecast trends. A typical strategy for analysing the rate of pandemic infection is to use time-series forecasting technique. This would assist us in developing better decision support systems. To anticipate COVID-19 active cases for a few countries, we recommended a hybrid model utilizing a fuzzy time series (FTS) model mixed with a non-linear growth model. The coronavirus positive case outbreak has been evaluated for Italy, Brazil, India, Germany, Pakistan, and Myanmar through June 5, 2020 in phase-1, and January 15, 2022 in phase-2, and forecasts active cases for the next 26 and 14 days respectively. The proposed framework fitting effect outperforms individual logistic growth and the fuzzy time series techniques, with R-scores of 0.9992 in phase-1 and 0.9784 in phase-2. The proposed model provided in this article may be utilised to comprehend a country's epidemic pattern and assist the government in developing better effective interventions.


Subject(s)
COVID-19 , Forecasting , SARS-CoV-2 , Humans , COVID-19/epidemiology , Forecasting/methods , SARS-CoV-2/isolation & purification , Fuzzy Logic , Logistic Models , Pandemics
4.
RSC Adv ; 14(34): 24473-24482, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39108958

ABSTRACT

Currently, nanocomposites are synthesized and used in various fields. One of the applications of these nanostructures is in the medical field. Therefore, the synthesis of new composites with biological properties is important. In this study, under microwave conditions, a new nanocomposite containing molybdenum and [2,2'-bipyridine]-4,4'-dicarboxylic acid (Mo/BPDA) was synthesized. The synthesized Mo/BPDA composite was subjected to biological evaluations such as antibacterial and antifungal properties by clinical and laboratory standards institute guidelines, and anticancer properties by MTT method. Characterization and structure characteristics of the Mo/BPDA nanocomposite were evaluated using XRD (X-ray diffraction pattern), FT-IR (Fourier-transform infrared), EDAX (energy-dispersive X-ray), EA (elemental analysis), TGA/DTG (thermogravimetric analysis/differential thermogravimetry), SEM (scanning electron microscopy) and BET (Brunauer-Emmett-Teller) analysis. The results indicated relatively high thermal stability (300 °C), high specific surface area (35 cm3 g-1) and uniform morphology of the synthesized Mo/BPDA nanocomposite. In antibacterial and antifungal activity, minimum inhibitory concentration (between 2 and 256 µg mL-1), minimum bactericidal concentration (between 4 and 128 µg mL-1), and minimum fungicidal concentration (between 64 and 256 µg mL-1) were tested and reported. The results showed that the antibacterial and antifungal activity of Mo/BPDA nanocomposite is higher than that of antibiotic drugs such as ampicillin, cefazolin, ketoconazole, and nystatin. In the investigation of the anticancer activity that was tested against bone cancer cells and breast cancer cells for 24 and 48 hours, cell proliferation and viability (37.3648-82.0674 tan control) and IC50 (33-43 µg mL-1) were observed. As a final result, it can be stated that the synthesized Mo/BPDA nanocomposite after the additional biological evaluations, such as in vivo study, can be used as an efficient option in treating bone cancer cells and breast cancer cells and a strong antibiotic on a wide range of infectious diseases.

5.
BMC Plant Biol ; 24(1): 624, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951758

ABSTRACT

Drought poses significant risks to maize cultivation by impairing plant growth, water uptake and yield; nano priming offers a promising avenue to mitigate these effects by enhancing plant water relations, stress tolerance and overall productivity. In the current experiment, we tested a hypothesis that seed priming with iron oxide nanoparticles (n-Fe2O3) can improve maize performance under water stress by improving its growth, water relations, yield and biochemical attributes. The experiment was conducted on a one main plot bisected into two subplots corresponding to the water and drought environments. Within each subplot, maize plants were raised from n-Fe2O3 primed seeds corresponding to 0 mg. L- 1 (as control treatment), 25, 50, 75, and 100 mg. L- 1 (as trial treatments). Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved the leaf relative water content, water potential, photosynthetic water use efficiency, and leaf intrinsic water use efficiency of maize plants by 13%, 44%, 64% and 17%, respectively compared to control under drought stress. The same treatments improved plant biochemical attributes such as total chlorophyll content, total flavonoids and ascorbic acid by 37%, 22%, and 36%, respectively. Seed priming with n-Fe2O3 accelerated the functioning of antioxidant enzymes such as SOD and POD and depressed the levels of leaf malondialdehyde and hydrogen peroxide significantly. Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved cob length, number of kernel rows per cob, and 100 kernel weight by 59%, 27% and 33%, respectively, under drought stress. Seed priming with n-Fe2O3 can be used to increase maize production under limited water scenarios.


Subject(s)
Dehydration , Seeds , Water , Zea mays , Zea mays/drug effects , Zea mays/physiology , Zea mays/growth & development , Zea mays/metabolism , Seeds/drug effects , Seeds/growth & development , Seeds/physiology , Water/metabolism , Droughts , Photosynthesis/drug effects , Ferric Compounds , Chlorophyll/metabolism , Plant Leaves/drug effects , Plant Leaves/physiology
6.
Int Immunopharmacol ; 139: 112779, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39068750

ABSTRACT

MicroRNAs, a collection of short noncoding RNAs, are promising biomarkers for identifying cancer in its early stages and tracking the effectiveness of treatment. This is due to their critical role in regulating gene expression and other vital biological functions via cell-level epigenetic mechanisms. This review brings together data on the molecular and clinical effects of miR-765 on different types of cancer. Significant variation in miR-765 levels has been observed in a variety of cancer types, suggesting that it could have an oncogene or tumor suppressor role. A number of pathways, including PLP2/Notch, VEGFA/Akt1, PDX1, KLK4, RUNX2, DPF3, EMP3, APE1, ERK/EMT axis, and others, are impacted by the inclusion of miR-765 in their analysis. MiR-765 is an essential biomarker that shows promise as a diagnostic tool for various types of cancer. The latest research has identified them as reliable predictive markers for detecting tumor development at an early stage. Based on our study, miR-765 shows promising potential as a biomarker for prognosis in multiple types of cancer. Specifically, we suggest that miR-765 could be an early detection marker for tumor development, progression, and metastasis.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Animals , Prognosis
7.
PLoS One ; 19(7): e0301179, 2024.
Article in English | MEDLINE | ID: mdl-39052643

ABSTRACT

Alzheimer's Disease (AD) is the prevailing type of neurodegenerative illness, characterised by the accumulation of amyloid beta plaques. The symptoms associated with AD are memory loss, emotional variability, and a decline in cognitive functioning. To date, the pharmaceuticals currently accessible in the marketplace are limited to symptom management. According to several research, antidepressants have demonstrated potential efficacy in the management of AD. In this particular investigation, a total of 24 anti-depressant medications were selected as ligands, while the Microtubule Affinity Receptor Kinase 4 (MARK4) protein was chosen as the focal point of our study. The selection of MARK4 was based on its known involvement in the advancement of AD and other types of malignancies, rendering it a highly prospective target for therapeutic interventions. The initial step involved doing ADMET analysis, which was subsequently followed by molecular docking of 24 drugs. This was succeeded by molecular dynamics simulation and molecular mechanics generalised Born surface area (MMGBSA) calculations. Upon conducting molecular docking experiments, it has been determined that the binding affinities observed fall within the range of -5.5 kcal/mol to -9.0 kcal/mol. In this study, we selected six anti-depressant compounds (CID ID - 4184, 2771, 4205, 5533, 4543, and 2160) based on their binding affinities, which were determined to be -9.0, -8.7, -8.4, -8.3, -8.2, and -8.2, respectively. Molecular dynamics simulations were conducted for all six drugs, with donepezil serving as the control drug. Various analyses were performed, including basic analysis and post-trajectory analysis such as free energy landscape (FEL), polarizable continuum model (PCM), and MMGBSA calculations. Based on the findings from molecular dynamics simulations and the MMGBSA analysis, it can be inferred that citalopram and mirtazapine exhibit considerable potential as anti-depressant agents. Consequently, these compounds warrant further investigation through in vitro and in vivo investigations in the context of treating AD.


Subject(s)
Alzheimer Disease , Antidepressive Agents , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Serine-Threonine Kinases , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Antidepressive Agents/pharmacology , Antidepressive Agents/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Protein Binding , Ligands
8.
Heliyon ; 10(11): e31685, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841437

ABSTRACT

Potentially toxic elements (PTEs) in sediment can be highly hazardous to the environment and public health. This study aimed to assess the human and ecological risks of PTEs in sediments around a pharmaceutical industry in Ilorin, Nigeria. Physicochemical parameters and the concentrations of lead (Pb), chromium (Cr), cadmium (Cd), cobalt (Co), arsenic (As), and nickel (Ni) were analyzed in sediment samples collected from seven locations in the wet and dry seasons. Standard two-dimensional principal component analysis (PCA) and risk assessments were also conducted. The concentrations of Pb, Co, Ni, Cr, Cd, and As in the sediments ranged from 0.001 to 0.031 mg/kg, 0-0.005 mg/kg, 0.005-0.012 mg/kg, 0.001-0.014 mg/kg, 0.005-0.024 mg/kg, and 0.001-0.012 mg/kg, respectively. The mean concentrations of the total PTEs content were found in decreasing order of concentration: Pb > Cd > Ni > Cr > As > Co. PCA showed that some of the PTEs were highly concentrated in samples obtained at other locations as well as at the discharge point. The Hazard Index was mostly <1 across locations, indicating little to no probable non-cancerous effect. However, the incremental lifetime cancer risk for arsenic and nickel was high and required attention. The ecological risk assessment showed that lead and arsenic were the major PTEs pollutants in all locations. The study identifies PTEs profiles in sediments and emphasises the necessity of continual monitoring and action to stop long-term negative impacts on the local environment and public health.

9.
Biol Proced Online ; 26(1): 20, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926669

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus, and zoonosis, and affects large regions of Asia, Southwestern and Southeastern Europe, and Africa. CCHFV can produce symptoms, including no specific clinical symptoms, mild to severe clinical symptoms, or deadly infections. Virus isolation attempts, antigen-capture enzyme-linked immunosorbent assay (ELISA), and reverse transcription polymerase chain reaction (RT-PCR) are all possible diagnostic tests for CCHFV. Furthermore, an efficient, quick, and cheap technology, including biosensors, must be designed and developed to detect CCHFV. The goal of this article is to offer an overview of modern laboratory tests available as well as other innovative detection methods such as biosensors for CCHFV, as well as the benefits and limits of the assays. Furthermore, confirmed cases of CCHF are managed with symptomatic assistance and general supportive care. This study examined the various treatment modalities, as well as their respective limitations and developments, including immunotherapy and antivirals. Recent biotechnology advancements and the availability of suitable animal models have accelerated the development of CCHF vaccines by a substantial margin. We examined a range of potential vaccines for CCHF in this research, comprising nucleic acid, viral particles, inactivated, and multi-epitope vaccines, as well as the present obstacles and developments in this field. Thus, the purpose of this review is to present a comprehensive summary of the endeavors dedicated to advancing various diagnostic, therapeutic, and preventive strategies for CCHF infection in anticipation of forthcoming hazards.

10.
Chemosphere ; 362: 142584, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38866332

ABSTRACT

The safety and health of aquatic organisms and humans are threatened by the increasing presence of pollutants in the environment. Endocrine disrupting chemicals are common pollutants which affect the function of endocrine and causes adverse effects on human health. These chemicals can disrupt metabolic processes by interacting with hormone receptors upon consumptions by humans or aquatic species. Several studies have reported the presence of endocrine disrupting chemicals in waterbodies, food, air and soil. These chemicals are associated with increasing occurrence of obesity, metabolic disorders, reproductive abnormalities, autism, cancer, epigenetic variation and cardiovascular risk. Conventional treatment processes are expensive, not environment friendly and unable to achieve complete removal of these harmful chemicals. In recent years, biochar from different sources has gained a considerable interest due to their adsorption efficiency with porous structure and large surface areas. biochar derived from lignocellulosic biomass are widely used as sustainable catalysts in soil remediation, carbon sequestration, removal of organic and inorganic pollutants and wastewater treatment. This review conceptualizes the production techniques of biochar from lignocellulosic biomass and explores the functionalization and interaction of biochar with endocrine-disrupting chemicals. This review also identifies the further needs of research. Overall, the environmental and health risks of endocrine-disrupting chemicals can be dealt with by biochar produced from lignocellulosic biomass as a sustainable and prominent approach.


Subject(s)
Charcoal , Endocrine Disruptors , Environmental Restoration and Remediation , Lignin , Charcoal/chemistry , Endocrine Disruptors/chemistry , Endocrine Disruptors/metabolism , Lignin/chemistry , Humans , Environmental Restoration and Remediation/methods , Adsorption , Environmental Pollutants/chemistry , Environmental Pollutants/metabolism
11.
Chemosphere ; 360: 142312, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761824

ABSTRACT

Lignocellulosic waste generation and their improper disposal has accelerated the problems associated with increased greenhouse gas emissions and associated environmental pollution. Constructive ways to manage and mitigate the pollution associated with lignocellulosic waste has propelled the research on biochar production using lignocellulose-based substrates. The sustainability of various biochar production technologies in employing lignocellulosic biomass as feedstock for biochar production not only aids in the lignocellulosic biomass valorization but also helps in carbon neutralization and carbon utilization. Functionalization of biochar through various physicochemical methods helps in improving their functional properties majorly by reducing the size of the biochar particles to nanoscale and modifying their surface properties. The usage of engineered biochar as nano adsorbents for environmental applications like dye absorption, removal of organic pollutants and endocrine disrupting compounds from wastewater has been the thrust areas of research in the past few decades. This review presents a comprehensive outlook on the up-to-date research findings related to the production and engineering of biochar from lignocellulosic biomass and their applications in environmental remediation especially with respect to wastewater treatment. Further a detailed discussion on various biochar activation methods and the future scope of biochar research is presented in this review work.


Subject(s)
Biomass , Charcoal , Lignin , Charcoal/chemistry , Lignin/chemistry , Environmental Restoration and Remediation/methods , Wastewater/chemistry , Adsorption , Environmental Pollutants/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis
12.
Mol Aspects Med ; 97: 101279, 2024 06.
Article in English | MEDLINE | ID: mdl-38772081

ABSTRACT

The first line of defense against viral infection of the host cell is the cellular lipid membrane, which is also a crucial first site of contact for viruses. Lipids may sometimes be used as viral receptors by viruses. For effective infection, viruses significantly depend on lipid rafts during the majority of the viral life cycle. It has been discovered that different viruses employ different lipid raft modification methods for attachment, internalization, membrane fusion, genome replication, assembly, and release. To preserve cellular homeostasis, cells have potent antioxidant, detoxifying, and cytoprotective capabilities. Nuclear factor erythroid 2-related factor 2 (NRF2), widely expressed in many tissues and cell types, is one crucial component controlling electrophilic and oxidative stress (OS). NRF2 has recently been given novel tasks, including controlling inflammation and antiviral interferon (IFN) responses. The activation of NRF2 has two effects: it may both promote and prevent the development of viral diseases. NRF2 may also alter the host's metabolism and innate immunity during viral infection. However, its primary function in viral infections is to regulate reactive oxygen species (ROS). In several research, the impact of NRF2 on lipid metabolism has been examined. NRF2 is also involved in the control of lipids during viral infection. We evaluated NRF2's function in controlling viral and lipid infections in this research. We also looked at how lipids function in viral infections. Finally, we investigated the role of NRF2 in lipid modulation during viral infections.


Subject(s)
Lipid Metabolism , NF-E2-Related Factor 2 , Oxidative Stress , Virus Diseases , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Virus Diseases/metabolism , Virus Diseases/immunology , Virus Diseases/virology , Animals , Reactive Oxygen Species/metabolism , Signal Transduction , Membrane Microdomains/metabolism , Immunity, Innate , Host-Pathogen Interactions
13.
Int J Biol Macromol ; 267(Pt 2): 131465, 2024 May.
Article in English | MEDLINE | ID: mdl-38604427

ABSTRACT

This research focused on synthesizing a CdIn2Se4@Ch nanocomposite by doping CdIn2Se4 into chitosan using a photolysis assisted ultrasonic process. The aim was to enhance the photodegradation efficiency of ofloxacin and 2,4-dichlorophenoxyacetic acid under sunlight. The synthesized CdIn2Se4@Ch nanocomposite was investigated via different techniques, including XRD, XPS, FTIR, TEM, DSC, TGA, UV-Vis and PL. The study also investigated the influence of various reaction parameters, including the effects of inorganic and organic ions. The synthesized nanocomposite demonstrated exceptional efficiency, achieving 86 % and 95 % removal rates, with corresponding rate constants of 0.025 and 0.047 min-1. This performance surpasses that of CdIn2Se4 by approximately 1.35 and 2.25 times, respectively. The values of COD were decreased to 78 and 86 % for ofloxacin and 2,4-dichlorophenoxyacetic, while the TOC values decreased to 71 and 84 %, respectively, from their premier values. The improvement in performance is associated with the introduction of CdIn2Se4 into chitosan, resulting in the self-integration of Cd into the catalyst. This creates a localized accumulation point for electrons, enhancing the efficiency of charge separation and further reducing the surface charge of chitosan. Experimental evidence suggests that superoxide and hydroxyl radicals play a significant role in the photodegradation of pollutants. Additionally, the nanocomposite exhibits excellent stability and can be reused up to five times, indicating remarkable stability and reusability of the developed photocatalyst.


Subject(s)
Chitosan , Nanocomposites , Ofloxacin , Chitosan/chemistry , Nanocomposites/chemistry , Ofloxacin/chemistry , Photolysis , 2,4-Dichlorophenoxyacetic Acid/chemistry , Catalysis , Cadmium/chemistry
14.
Heliyon ; 10(7): e29078, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601583

ABSTRACT

Anthropogenic activities have significantly polluted the natural environments all over the world. Leather processing industries release toxic heavy metals through their effluents posing a great threat to the environment. Chromium (Cr) is the major component of tannery effluents. We designed this experiment with the aim to remediate Cr from effluents of tanneries through phytoremediation. We selected three native macrophytes i.e. Pistia stratiotes, Eichhornia crassipes, and Typha latifolia to grow in a set of Constructed Wetland systems (CWs) with a continuous supply of tannery wastewater. T. latifolia was the most efficient phytoremediator of these macrophytes as it reduced the Cr content by 96.7%. The effluent after passing through the CWs containing T. latifolia showed only 0.426 mg/L Cr content. All macrophytes showed an enhanced phytochemical activity such as total antioxidant activity (TAA), total reduction potential (TRP), total phenolic content (TPC), total flavonoid content (TFC), and DPPH radical scavenging activity (DPPH) substantially. The activation of antioxidant mechanism may have contributed towards robust defense system of these plants for survival in excessive Cr contaminated media. Also, these macrophytes showed a positive relationship in reducing Cr content from tannery wastewater. Results of this study could help in effective sustainable management of aquatic environments contaminated with metal pollutants from human activities.

15.
Heliyon ; 10(7): e29128, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38623208

ABSTRACT

Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.

16.
Microb Cell Fact ; 23(1): 90, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528584

ABSTRACT

Cellular lipid membranes serve as the primary barrier preventing viral infection of the host cell and provide viruses with a critical initial point of contact. Occasionally, viruses can utilize lipids as viral receptors. Viruses depend significantly on lipid rafts for infection at virtually every stage of their life cycle. The pivotal role that proprotein convertase subtilisin/kexin Type 9 (PCSK9) plays in cholesterol homeostasis and atherosclerosis, primarily by post-transcriptionally regulating hepatic low-density lipoprotein receptor (LDLR) and promoting its lysosomal degradation, has garnered increasing interest. Conversely, using therapeutic, fully humanized antibodies to block PCSK9 leads to a significant reduction in high LDL cholesterol (LDL-C) levels. The Food and Drug Administration (FDA) has approved PCSK9 inhibitors, including inclisiran (Leqvio®), alirocumab (Praluent), and evolocumab (Repatha). At present, active immunization strategies targeting PCSK9 present a compelling substitute for passive immunization through the administration of antibodies. In addition to the current inquiry into the potential therapeutic application of PCSK9 inhibition in human immunodeficiency virus (HIV)-infected patients for hyperlipidemia associated with HIV and antiretroviral therapy (ART), preclinical research suggests that PCSK9 may also play a role in inhibiting hepatitis C virus (HCV) replication. Furthermore, PCSK9 inhibition has been suggested to protect against dengue virus (DENV) potentially and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses. Recent evidence regarding the impact of PCSK9 on a variety of viral infections, including HCV, HIV, DENV, and SARS-CoV-2, is examined in this article. As a result, PCSK9 inhibitors and vaccines may serve as viable host therapies for viral infections, as our research indicates that PCSK9 is significantly involved in the pathogenesis of viral infections.


Subject(s)
HIV Infections , Hepatitis C , PCSK9 Inhibitors , Humans , Hepatitis C/drug therapy , HIV Infections/drug therapy , PCSK9 Inhibitors/pharmacology , PCSK9 Inhibitors/therapeutic use , Proprotein Convertase 9/metabolism , Subtilisins
17.
PLoS One ; 19(3): e0299378, 2024.
Article in English | MEDLINE | ID: mdl-38466698

ABSTRACT

Antibiotics are the drugs that are used for the management of microbial diseases. However, these conventional synthetic drugs can harmfully affect the human health. Since phytochemicals are extracted from natural sources and, are hence relatively safer for human health, they are the enticing alternatives in this regard. Cinnamon is also one of those plants which is being employed as herbal medication for centuries against certain microbial infections due its significant therapeutic effectiveness. A well-known pathogenic bacterium called H. pylori causes a wide range of illnesses in human body. This pathogen's pathogenicity is determined by certain virulent proteins. In this study, some of such proteins, which included virB4, virB8, and virB9 were selected to evaluate the therapeutic efficiency of cinnamon compounds. These proteins were identified in different isolates of H. pylori. The structural modelling of all these proteins were performed initially in order to proceed them for molecular docking analysis. While, the docking studies illustrated that one of the cinnamon compounds, cinnamyl acetate, showed significant binding interactions with virB4 and virB9. However, benzyl benzoate which is another cinnamon compound, docked well with virB8. Afterwards, the MD simulations were incorporated to explore the interaction motions and structural stability of all the docked complexes. In this regard, the resultant maps of Bfactor, eigenvalues and elastic network model, among other factors ensured the structural stabilities of all the respective complexes. After these crucial estimations, benzyl benzoate and cinnamyl acetate underwent the ADMET investigation to assess their pharmacokinetic characteristics. SwissADME and ADMETLab 2.0 server were employed for this investigation. The compiled findings these servers revealed that both, benzyl benzoate and cinnamyl acetate, exhibited a significant level of pharmacokinetic and drug-likeness conformity.


Subject(s)
Benzoates , Cinnamates , Helicobacter pylori , Humans , Molecular Docking Simulation , Cinnamomum zeylanicum , Molecular Dynamics Simulation
18.
Luminescence ; 39(3): e4703, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38433325

ABSTRACT

Transition metal dichalcogenides (TMDCs) are versatile two-dimensional (2D) nanomaterials used in biosensing applications due to their excellent physical and chemical properties. Due to biomaterial target properties, biosensors' most significant challenge is improving their sensitivity and stability. In environmental analysis, TMDCs have demonstrated exceptional pollutant detection and removal capabilities. Their high surface area, tunable electronic properties, and chemical reactivity make them ideal for sensors and adsorbents targeting various contaminants, including heavy metals, organic pollutants, and emerging contaminants. Furthermore, their unique electronic and optical properties enable sensitive detection techniques, enhancing our ability to monitor and mitigate environmental pollution. In the food analysis, TMDCs-based nanomaterials have shown remarkable potential in ensuring food safety and quality. These nanomaterials exhibit high specificity and sensitivity for detecting contaminants, pathogens, and adulterants in various food matrices. Their integration into sensor platforms enables rapid and on-site analysis, reducing the reliance on centralized laboratories and facilitating timely interventions in the food supply chain. In biomedical studies, TMDCs-based nanomaterials have demonstrated significant strides in diagnostic and therapeutic applications. Their biocompatibility, surface functionalization versatility, and photothermal properties have paved the way for novel disease detection, drug delivery, and targeted therapy approaches. Moreover, TMDCs-based nanomaterials have shown promise in imaging modalities, providing enhanced contrast and resolution for various medical imaging techniques. This article provides a comprehensive overview of 2D TMDCs-based biosensors, emphasizing the growing demand for advanced sensing technologies in environmental, food, and biomedical analysis.


Subject(s)
Environmental Pollutants , Nanostructures , Biocompatible Materials , Drug Delivery Systems , Electronics
19.
Chemosphere ; 353: 141541, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423149

ABSTRACT

Plastics are a vital component of our daily lives in the contemporary globalization period; they are present in all facets of modern life. Because the bulk of synthetic plastics utilized in the market are non-biodegradable by nature, the issues associated with their contamination are unavoidable in an era dominated by polymers. Polyethylene terephthalate (PET), which is extensively used in industries such as automotive, packaging, textile, food, and beverages production represents a major share of these non-biodegradable polymer productions. Given its extensive application across various sectors, PET usage results in a considerable amount of post-consumer waste, majority of which require disposal after a certain period. However, the recycling of polymeric waste materials has emerged as a prominent topic in research, driven by growing environmental consciousness. Numerous studies indicate that products derived from polymeric waste can be converted into a new polymeric resource in diverse sectors, including organic coatings and regenerative medicine. This review aims to consolidate significant scientific literatures on the recycling PET waste for electrochemical device applications. It also highlights the current challenges in scaling up these processes for industrial application.


Subject(s)
Plastics , Polyethylene Terephthalates , Recycling , Polymers , Product Packaging
20.
Micron ; 179: 103595, 2024 04.
Article in English | MEDLINE | ID: mdl-38341939

ABSTRACT

The primary objective of this review is to present a comprehensive examination of the synthesis, characterization, and antibacterial applications of covalent organic frameworks (COFs). COFs represent a distinct category of porous materials characterized by a blend of advantageous features, including customizable pore dimensions, substantial surface area, and adaptable chemical properties. These attributes position COFs as promising contenders for various applications, notably in the realm of antibacterial activity. COFs exhibit considerable potential in the domain of antibacterial applications, owing to their amenability to functionalization with antibacterial agents. The scientific community is actively exploring COFs that have been imbued with metal ions, such as copper or silver, given their observed robust antibacterial properties. These investigations strongly suggest that COFs could be harnessed effectively as potent antibacterial agents across a diverse array of applications. Finally, COFs hold immense promise as a novel class of materials for antibacterial applications, shedding light on the synthesis, characterization, and functionalization of COFs tailored for specific purposes. The potential of COFs as effective antibacterial agents beckons further exploration and underscores their potential to revolutionize antibacterial strategies in various domains.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/pharmacology , Anti-Bacterial Agents/pharmacology , Silver/pharmacology , Copper/pharmacology , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL