Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
J Phys Chem B ; 126(26): 4925-4938, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35762502

ABSTRACT

Deep eutectic solvents (DESs) are developing as an alternate medium for aromatic extraction, especially benzene and thiophene from aliphatic hydrocarbon mixtures. In this work, molecular dynamics (MD) simulations were first used to investigate the solvation structure of benzene, thiophene, and n-hexane in monoethanolamine-based DESs. It reveals the liquid structures in the adjacent neighbor shells, which is a function of electron-withdrawing sulfur attached to thiophene and the π-electron cloud of benzene. The intermolecular forces between aromatic, aliphatic, and DES components are analyzed in van der Waals and hydrogen bond interactions. The chloride ions serve as a charge carrier bridge between choline and monoethanolamine precursors. The solvation of benzene, thiophene, and n-hexane in the DESs depends on volume expansion and minor solvent structural changes. Density functional theory results provided information on the mechanism of short-range interactions between organic solutes and studied DES. It aids in understanding the structural orientations of a DES with the addition of solutes, essential to the formation of DES. The solvation shell structure and characteristics were investigated in tandem with the possibility of benzene and thiophene clustering. The 1H NMR and 2D 1H-1H-NOESY were used to investigate the intermolecular interactions between benzene, thiophene, and n-hexane with monoethanolamine-based solvents. It concludes that high-ordered DES1 is more inclined to higher solubility than lower-ordered ones with a higher molar ratio of monoethanolamine. The solvation was reduced because the entropy gain was not maximized in the lower ordered DESs.


Subject(s)
Ethanolamine , Molecular Dynamics Simulation , Benzene , Deep Eutectic Solvents , Solvents/chemistry , Thiophenes
2.
Carbohydr Polym ; 256: 117520, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33483041

ABSTRACT

Xylan and gelatin-based hydrogels are prepared in different molar ratios using ethylene glycol diglycidyl ether cross-linker. The hydrogels are characterized by Fourier transform infrared spectroscopy, morphology, thermal analysis, and swelling ratio. The rheological experiment shows the gels are cross-linked successfully by revealing the viscoelastic nature. The xylan-gelatin gel synthesized in a 5:1 molar ratio (hence XG5) has higher storage modulus, gelation temperature, and time among the synthesized gels. The adsorption behaviour of the synthesized gels is studied for the removal of methylene blue, by varying adsorbate concentration, pH, and temperature. Among the synthesized hydrogels, XG5 shows the highest adsorption capacity of 26.04 mg g-1 at pH = 5.84 and 25 °C. The kinetics of the adsorption process follows the pseudo-second-order model, and monolayer adsorption is adequately represented by the Langmuir isotherm model. The adsorption process is established as spontaneous, exothermic, and physisorption from the thermodynamic parameters.


Subject(s)
Gelatin/chemistry , Hydrogels/chemistry , Methylene Blue/isolation & purification , Water Pollutants, Chemical/isolation & purification , Xylans/chemistry , Adsorption , Cross-Linking Reagents/chemistry , Elasticity , Epoxy Resins/chemistry , Hydrogen-Ion Concentration , Kinetics , Methylene Blue/chemistry , Rheology , Temperature , Thermodynamics , Viscosity , Water Pollutants, Chemical/chemistry , Wettability
3.
J Phys Chem B ; 124(34): 7405-7420, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32706582

ABSTRACT

In recent times, deep eutectic solvents (DES) have received attention as an extractive media for separations. In this work, the water stability of eight menthol-based DESs and two tetrabutylammonium chloride (N4444Cl) based DESs with organic acid-based hydrogen bond donors (HBD) at a temperature of 298.15 K and atmospheric pressure were studied. dl-Menthol and N4444Cl were considered as the hydrogen bond acceptors (HBA). Molecular dynamics simulation (MD) was used as a tool to examine the distribution of molecules of DES and water in either phase. The intermolecular nonbonded interaction among the species of the systems was analyzed with radial distribution function, interaction energy, and hydrogen-bonding analysis to understand the stability of DESs in an aqueous medium. The results showed that the strong hydrogen bond plays a crucial role in the water stability of the DES. The degree of hydrogen bonding in HBD-water in terms of HBDs obtained by MD simulation can be presented in the order of acetic acid > levulinic acid > butanoic acid > pyruvic acid > hexanoic acid > octanoic acid > decanoic acid > dodecanoic acid. The strength of the hydrogen bond was attributed to the structure of solvents and the alkyl chain length of the HBD group. Overall, the order of stability of DES in water based on a "relative stability factor" was found as dl-menthol:acetic acid (1:1) < dl-menthol: levulinic acid (1:1) < dl-menthol:butanoic acid (1:1) < dl-menthol:pyruvic acid (1:2) < dl-menthol:hexanoic acid (1:1) < dl-menthol:octanoic acid (1:1) < dl-menthol: decanoic acid (1:1) < dl-menthol:dodecanoic acid (2:1). The transfer of molecules in the system from the aqueous phase to the DES rich phase was analyzed with the help of mean-square displacement and diffusion-coefficients. dl-Menthol and organic acids starting from octanoic acid and higher ones can be used in aqueous systems as solvents. Finally, dl-menthol:octanoic acid (1:1) -based DES was used to benchmark and predict the extraction efficiency of a pesticide (nitenpyram) from an aqueous feed. Hydrogen bond analysis demonstrated higher interactions of nitenpyram with dl-menthol and octanoic acid as compared to water. The MD simulation of the ternary system consisting of DES, water, and nitenpyram showed encouraging results, and gave an excellent agreement with experimental literature data in terms of extraction efficiency (∼42 to 46.7%) and distribution ratio (0.72).

4.
J Phys Chem B ; 122(14): 4006-4015, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29543459

ABSTRACT

The present study aims at the extraction of a polyaromatic hydrocarbon from fuel oils using a novel low-cost deep eutectic solvent (DES). The DES is prepared by mixing the hydrogen bond acceptor (HBA; methyltriphenylphosphonium bromide, MTPB) and hydrogen bond donor (HBD; ethylene glycol) at a molar ratio of 1:4. The liquid-liquid equilibrium is then measured at ambient condition. The classical molecular dynamic (MD) simulation technique is then employed to investigate and compare the experimental phase behavior of a DES-quinoline-heptane ternary system. For performing the MD simulations, two experimental feed points are considered which gave high selectivity and distribution coefficient values. The interaction energies of different species and the structural properties such as radial distribution functions, average number of hydrogen bonds, and spatial distribution functions (SDFs) are then computed. It is found that the cation within the HBA, namely, MTP, possesses favorable interactions with quinoline when compared to HBD or anion (Br). MTP here acts as a HBA and contributes to the hydrogen bonding with quinoline, which results in higher experimental selectivity values. The calculations of SDFs further reveal the fact that the DES molecules are evenly distributed around the active sites of the quinoline molecule, whereas heptane molecules are found to be distributed around the nonactive sites of the aromatic ring.

SELECTION OF CITATIONS
SEARCH DETAIL