Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters








Publication year range
1.
Appl Netw Sci ; 7(1): 85, 2022.
Article in English | MEDLINE | ID: mdl-36567737

ABSTRACT

In this paper, we propose a general framework for the reconstruction of the underlying cross-regional transmission network contributing to the spread of an infectious disease. We employ an autoregressive model that allows to decompose the mean number of infections into three components that describe: intra-locality infections, inter-locality infections, and infections from other sources such as travelers arriving to a country from abroad. This model is commonly used in the identification of spatiotemporal patterns in seasonal infectious diseases and thus in forecasting infection counts. However, our contribution lies in identifying the inter-locality term as a time-evolving network, and rather than using the model for forecasting, we focus on the network properties without any assumption on seasonality or recurrence of the disease. The topology of the network is then studied to get insight into the disease dynamics. Building on this, and particularly on the centrality of the nodes of the identified network, a strategy for intervention and disease control is devised.

2.
J Environ Manage ; 285: 112121, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33581459

ABSTRACT

In this paper, using Lebanon's capital, Beirut, as a case study, a methodology is proposed to assess the potential for solar photovoltaics (PV) in urban areas incorporating both economic and non-economic factors. Utilizing a rich spatial dataset of solar irradiation augmented with electricity bills at the building level, the cost and benefit of installing rooftop PV systems for each building is estimated. Additionally, incentives and barriers for adopting those systems are investigated using a probabilistic choice model. The results show that Beirut city has a potential for distributed rooftop solar PV to be between 195 and 295 MWp. However, adoption rates are low at 0.49% and 1.23% for residential and commercial buildings, respectively, reflecting the limitation of financial incentives alone to promote the deployment of distributed renewable energy systems in transition economies. The impact of different incentive policy instruments and the role of solar PV in today's economic crisis in Lebanon is analyzed. The biggest impact was achieved through removing (or lowering) electricity tariff subsidy, although this option remains highly constrained by political calculus. We argue that the Lebanese government should fast-track and implement the required legal framework to facilitate and incentivize distributed power generation from renewable sources to promote both green energy and its financial resilience. The proposed modeling framework together with the results obtained in this study will have important implications for energy policy makers in Lebanon and other transition economies.


Subject(s)
Solar Energy , Cities , Electricity , Lebanon , Renewable Energy
3.
PLoS One ; 16(1): e0246096, 2021.
Article in English | MEDLINE | ID: mdl-33508036

ABSTRACT

In this paper we focus on a critical component of the city: its building stock, which holds much of its socio-economic activities. In our case, the lack of a comprehensive database about their features and its limitation to a surveyed subset lead us to adopt data-driven techniques to extend our knowledge to the near-city-scale. Neural networks and random forests are applied to identify the buildings' number of floors and construction periods' dependencies on a set of shape features: area, perimeter, and height along with the annual electricity consumption, relying a surveyed data in the city of Beirut. The predicted results are then compared with established scaling laws of urban forms, which constitutes a further consistency check and validation of our workflow.


Subject(s)
Electricity , Machine Learning , Models, Theoretical , Urban Renewal , Cities
4.
Phys Rev E ; 101(5-1): 050301, 2020 May.
Article in English | MEDLINE | ID: mdl-32575232

ABSTRACT

We analyze the morphology of the modern urban skyline in terms of its roughness properties. This is facilitated by a database of 10^{7} building heights in cities throughout the Netherlands which allows us to compute the asymptotic height difference correlation function in each city. We find that in cities for which the height correlations display power-law scaling as a function of distance between the buildings, the corresponding roughness exponents are commensurate to the Edwards-Wilkinson and Kardar-Parisi-Zhang equations for kinetic roughening. Based on analogy to discrete deposition models, we argue that these two limiting classes emerge because of possible height restriction rules for buildings in some cities.

5.
Sci Rep ; 9(1): 1699, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30737413

ABSTRACT

Experiments with groups of fish inside a circular tank have provided valuable insights into the nature of leadership in social groups. Sophisticated mathematical models were constructed with a view to recovering observed schooling and leadership behavior in such experiments. Here, and with the help of variations on a promising class of such models, we explore a dual set of social concerns, namely the likelihood of permanent evasion from a cohesive group by a controlled individual in confinement. Our minimal model reduces to a leader-follower configuration, with cone-of-vision driven interactions inside a circular domain. We show that the resulting dynamical system sustains a rich supply of non-aligned, straying "follower" states, the dynamics on which displays (chaotic) intermittency between boundary following behavior and infrequent long flights. We map these states in configuration space and explore transitions between them. We demonstrate robustness of observed behavior by considering model variations, as well as alternate leader control trajectory. While it is too early to draw the implications of leader-follower dynamics to collective behavior, we do confirm that a model stray fish relates to a self-organized school bouncing back and forth along the diameter very much like a follower responds to a point leader in our model. We further draw the implications of our results to the study of dynamical systems with discontinuities, robotics, and the study of human behavior in the face of normative control and confinement.


Subject(s)
Leadership , Humans , Models, Theoretical , Robotics , Social Behavior
6.
Biophys Chem ; 231: 155-160, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28318905

ABSTRACT

In this manuscript we use a two-dimensional coarse-grained model to study how amyloid fibrils grow towards an equilibrium state where they coexist with proteins dissolved in a solution. Free-energies to dissociate proteins from fibrils are estimated from the residual concentration of dissolved proteins. Consistent with experiments, the concentration of proteins in solution affects the growth rate of fibrils but not their equilibrium state. Also, studies of the temperature dependence of the equilibrium state can be used to estimate thermodynamic quantities, e.g., heat capacity and entropy.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Hydrogen Bonding , Monte Carlo Method , Temperature , Thermodynamics
7.
Phys Rev E ; 95(1-1): 012323, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28208353

ABSTRACT

We explore the scaling of cities' solar potentials with their number of buildings and reveal a latent dependence between the solar potential and the length of the corresponding city's road network. This scaling is shown to be valid at the grid and block levels and is attributed to a common street length distribution. Additionally, we compute the buildings' solar potential correlation function and length in order to determine the set of critical exponents typifying the urban solar potential universality class.

8.
Phys Rev E ; 93(5): 052405, 2016 May.
Article in English | MEDLINE | ID: mdl-27300922

ABSTRACT

We construct a phase-field model for collective cell migration based on a Ginzburg-Landau free-energy formulation. We model adhesion, surface tension, repulsion, coattraction, and polarization, enabling us to follow the cells' morphologies and the effect of their membranes fluctuations on collective motion. We were able to measure the tissue surface tension as a function of the individual cell cortical tension and adhesion and identify a density threshold for cell-sheet formation.


Subject(s)
Cell Movement , Models, Biological , Cell Adhesion
9.
Soft Matter ; 11(22): 4476-80, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-25943025

ABSTRACT

In this paper we model the growth of a neural cell together with the actin dynamics taking place at its growing region by constructing a phase-field model. This is done by assigning auxiliary fields to different constituents of the cell in order to differentiate them. Specifically, the inner and outer regions of the neural cell are described by ϕ = 1 and ϕ = 0 respectively, whereas the inside and outside of its leading edge are portrayed by ψ = 1 and ψ = 0. This formulation inherently locates the boundary, which is required to determine the evolution of the underlying actin dynamics. Therefore, it provides an alternative to boundary tracking algorithms. Then the equations governing the molecular workings of the cell specifically those of actin are modified in order to satisfy their corresponding boundary conditions.


Subject(s)
Actins/physiology , Models, Biological , Neurons/physiology , Algorithms
10.
Soft Matter ; 10(48): 9715-20, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25365918

ABSTRACT

In this paper we present a model for an immune response to an invading pathogen. Particularly, we follow the motion of a neutrophil as it migrates to the site of infection guided by chemical cues, a mechanism termed chemotaxis, with the ability to reorient itself as the pathogen changes its position. In the process, the cell undergoes morphological alterations, in addition to the structural changes observed at its leading edge. Also, we derive a condition for a successful immune reaction by relating the speed of the neutrophil to that of the pathogen and to the diffusion coefficient of the chemical attractant.


Subject(s)
Models, Immunological , Neutrophils/immunology , Cell Movement
11.
Article in English | MEDLINE | ID: mdl-24125388

ABSTRACT

To simulate the motion of neutrophils and their morphodynamics in response to chemical cues, we construct a model based on the phase-field method utilizing a description with a free-energy functional and associated dynamics which captures the basic features of the phenomenon. We additionally incorporate spatial sensing by introducing an auxiliary field which depicts the polymerization of the region of the cell facing the highest concentration of the chemical attractant.


Subject(s)
Chemotaxis , Models, Biological , Neutrophils/cytology
SELECTION OF CITATIONS
SEARCH DETAIL