Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Environ Pollut ; 361: 124717, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147225

ABSTRACT

The domestic combustion of locally sourced smoky (bituminous) coal in Xuanwei and Fuyuan counties, China, is responsible for some of the highest lung cancer rates in the world. Recent research has pointed to methylated PAHs (mPAHs), particularly 5-methylchrysene (5MC), within coal combustion products as a driving factor. Here we describe measurements of mPAHs in Xuanwei and Fuyuan derived from controlled burnings (i.e., water boiling tests, WBT, n = 27) representing exposures during stove use, and an exposure assessment (EA) study (n = 116) representing 24 h weighted exposures. Using smoky coal has led to significantly higher concentrations of known and likely human carcinogens than using smokeless coal, including 5MC (3.7 ng/m3 vs. 1.0 ng/m3 for EA samples and 100.8 ng/m3 vs. 2.2 ng/m3 for WBT samples), benzo[a]pyrene (38.0 ng/m3 vs. 7.9 ng/m3 for EA samples and 455.3 ng/m3 vs. 12.0 ng/m3 for WBT samples) and 7,12-dimethylbenz[a]anthracene (1.9 ng/m3 vs. 0.2 ng/m3 for EA samples and 47.7 ng/m3 vs. 0.6 ng/m3 for WBT samples). Mixed effect models for both EA samples and WBT samples revealed clear variation in mPAHs concentrations depending on smoky coal source while stove ventilation was consistently found to reduce measured concentrations (by up to nine fold and 65 fold for EA and WBT samples respectively when using smoky coal). Fuel type had a larger influence on mPAHs concentrations than stove type. These findings indicate that users of smoky coal experience exposure to many PAHs, including known and suspected human carcinogens (especially during cooking activities), many of which are not routinely tested for. Collectively, this provides insights into the potential etiologies of lung cancer in the region and further highlights the importance of targeting clean fuel transitions and stove refinements as the final goal for reducing household air pollution and its associated health risks.

2.
Environ Pollut ; 290: 117949, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34438166

ABSTRACT

The domestic combustion of smoky (bituminous) coal in the Chinese counties of Xuanwei and Fuyuan, are responsible for some of the highest rates of lung cancer in the world. Cancer rates vary between coal producing regions (deposits) in the area, with coals from Laibin exhibiting particularly high risks and smokeless (anthracite) coal exhibiting lower risks. However, little information is available on the specific burning characteristics of coals from throughout the area. We conducted an extensive controlled burning experiment using coal from multiple deposits in either a traditional firepit or ventilated stove, accompanied by a detailed examination of time-weighted and real-time size-aggregated particle concentrations. Smoky coal caused higher particle concentrations of all sizes than smokeless coal, with variations observed by geological source. Virtually all particle emissions were in the PM2.5 fraction (98% - mass based), and 75% and 46% were in the PM1 and PM0.3 fraction respectively. Real-time concentrations of PM1 and PM0.1 peaked after coal was added and declined afterwards. Ventilation reduced particle concentrations by up to 15-fold and increased the coal burning rate by 1.9-fold. These findings may provide valuable insight for reducing exposure and adverse health effects associated with domestic coal combustion.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/analysis , Air Pollution, Indoor/analysis , China , Coal/analysis , Cooking
SELECTION OF CITATIONS
SEARCH DETAIL