Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33836587

ABSTRACT

The brain requires continuously high energy production to maintain ion gradients and normal function. Mitochondria critically undergird brain energetics, and mitochondrial abnormalities feature prominently in neuropsychiatric disease. However, many unique aspects of brain mitochondria composition and function are poorly understood. Developing improved neuroprotective therapeutics thus requires more comprehensively understanding brain mitochondria, including accurately delineating protein composition and channel-transporter functional networks. However, obtaining pure mitochondria from the brain is especially challenging due to its distinctive lipid and cell structure properties. As a result, conflicting reports on protein localization to brain mitochondria abound. Here we illustrate this problem with the neuropsychiatric disease-associated L-type calcium channel Cav1.2α1 subunit previously observed in crude mitochondria. We applied a dual-process approach to obtain functionally intact versus compositionally pure brain mitochondria. One branch utilizes discontinuous density gradient centrifugation to isolate semipure mitochondria suitable for functional assays but unsuitable for protein localization because of endoplasmic reticulum (ER) contamination. The other branch utilizes self-forming density gradient ultracentrifugation to remove ER and yield ultrapure mitochondria that are suitable for investigating protein localization but functionally compromised. Through this process, we evaluated brain mitochondria protein content and observed the absence of Cav1.2α1 and other previously reported mitochondrial proteins, including the NMDA receptor, ryanodine receptor 1, monocarboxylate transporter 1, excitatory amino acid transporter 1, and glyceraldehyde 3-phosphate dehydrogenase. Conversely, we confirmed mitochondrial localization of several plasma membrane proteins previously reported to also localize to mitochondria. We expect this dual-process isolation procedure will enhance understanding of brain mitochondria in both health and disease.


Subject(s)
Brain/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Animals , Calcium/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Endoplasmic Reticulum/metabolism , Female , Homeostasis , Humans , Ion Transport , Male , Membrane Proteins/isolation & purification , Mice , Mice, Knockout
2.
Cell ; 184(10): 2715-2732.e23, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33852912

ABSTRACT

Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.


Subject(s)
Alzheimer Disease/etiology , Alzheimer Disease/prevention & control , Brain Injuries, Traumatic/complications , Neuroprotection , tau Proteins/metabolism , Acetylation , Alzheimer Disease/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Biomarkers/blood , Biomarkers/metabolism , Brain Injuries, Traumatic/metabolism , Cell Line , Diflunisal/therapeutic use , Female , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Salicylates/therapeutic use , Sirtuin 1/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism , tau Proteins/blood
3.
Addict Biol ; 25(2): e12690, 2020 03.
Article in English | MEDLINE | ID: mdl-30397978

ABSTRACT

Acid-sensing ion channels (ASICs) are abundantly expressed in the nucleus accumbens core (NAcore), a region of the mesolimbocortical system that has an established role in regulating drug-seeking behavior. Previous work shows that a single dose of cocaine reduced the AMPA-to-NMDA ratio in Asic1a-/- mice, an effect observed after withdrawal in wild-type mice, whereas ASIC1A overexpression in the NAcore of rats decreases cocaine self-administration. However, whether ASIC1A overexpression in the NAcore alters measures of drug-seeking behavior after the self-administration period is unknown. To examine this issue, the ASIC1A subunit was overexpressed in male Sprague-Dawley rats by injecting them with adeno-associated virus, targeted at the NAcore, after completion of 2 weeks of cocaine or food self-administration. After 21 days of homecage abstinence, rats underwent a cue-/context-driven drug/food-seeking test, followed by extinction training and then drug/food-primed, cued, and cued + drug/food-primed reinstatement tests. The results indicate that ASIC1A overexpression in the NAcore enhanced cue-/context-driven cocaine seeking, cocaine-primed reinstatement, and cued + cocaine-primed reinstatement but had no effect on food-seeking behavior, indicating a selective effect for ASIC1A in the processes underlying extinction and cocaine-seeking behavior.


Subject(s)
Acid Sensing Ion Channels/genetics , Behavior, Animal/drug effects , Cocaine-Related Disorders/genetics , Cocaine/pharmacology , Gene Expression/genetics , Nucleus Accumbens/drug effects , Animals , Cocaine-Related Disorders/physiopathology , Disease Models, Animal , Dopamine Uptake Inhibitors/pharmacology , Male , Nucleus Accumbens/physiopathology , Rats , Rats, Sprague-Dawley
4.
Cell Rep ; 28(10): 2608-2619.e6, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31484072

ABSTRACT

Hepatocellular carcinoma (HCC) is a devastating cancer increasingly caused by non-alcoholic fatty liver disease (NAFLD). Disrupting the liver Mitochondrial Pyruvate Carrier (MPC) in mice attenuates NAFLD. Thus, we considered whether liver MPC disruption also prevents HCC. Here, we use the N-nitrosodiethylamine plus carbon tetrachloride model of HCC development to test how liver-specific MPC knock out affects hepatocellular tumorigenesis. Our data show that liver MPC ablation markedly decreases tumorigenesis and that MPC-deficient tumors transcriptomically downregulate glutathione metabolism. We observe that MPC disruption and glutathione depletion in cultured hepatomas are synthetically lethal. Stable isotope tracing shows that hepatocyte MPC disruption reroutes glutamine from glutathione synthesis into the tricarboxylic acid (TCA) cycle. These results support a model where inducing metabolic competition for glutamine by MPC disruption impairs hepatocellular tumorigenesis by limiting glutathione synthesis. These findings raise the possibility that combining MPC disruption and glutathione stress may be therapeutically useful in HCC and additional cancers.


Subject(s)
Carcinogenesis/metabolism , Carcinoma, Hepatocellular/metabolism , Citric Acid Cycle , Glutamine/metabolism , Glutathione/biosynthesis , Liver Neoplasms/metabolism , Mitochondria/metabolism , Pyruvic Acid/metabolism , Animals , Apoptosis , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Hepatocytes/metabolism , Humans , Liver Neoplasms/genetics , Mice, Inbred C57BL , Neoplasm Proteins/metabolism , Organ Specificity , Transcriptome/genetics
5.
Neuropsychopharmacology ; 39(10): 2432-40, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24755889

ABSTRACT

Circadian rhythm and sleep disruptions occur frequently in individuals with alcohol use disorders (AUD) and present significant barriers to treatment. Recently, a variant of adenosine transporter, equilibrative nucleoside transporter 1 (ENT1), was associated with the co-occurrence of sleep problems and AUD. We have previously shown that mice lacking ENT1 (ENT1 KO) have reduced adenosine levels in the striatum and drink more alcohol compared with wild types (WT). However, it is unknown whether ENT1 deletion disrupts circadian rhythms, which may contribute to alcohol preference in ENT1 KO mice. Here we used these mice to determine whether endogenous adenosine regulates circadian genetic and behavioral rhythms and influences alcohol intake during chronodisruption. We examined circadian locomotor activity in ENT1 KO vs WT littermates and found that ENT1 KO mice were both active earlier and hyperactive compared with WT mice at night. We used real-time PCR and immunohistochemistry to estimate striatal clock gene levels and found that PER2 expression in the striatum was blunted by ENT1 deletion or A2A receptor (A2AR) antagonism. Next, we exposed ENT1 KO and WT mice to constant light (LL) and found further elevation in ethanol intake in ENT1 KO, but not in WT mice, supporting the notion that circadian dysfunction may contribute to increased alcohol intake in ENT1 KO mice. Finally, we showed that A2AR agonist administration normalized PER1 and PER2 expression and circadian locomotor activity in ENT1 KO mice. Together, our results demonstrate that adenosine signaling regulates cellular and behavioral circadian timing and influences alcohol intake during chronodisruption.


Subject(s)
Alcohol Drinking/physiopathology , Circadian Rhythm/physiology , Corpus Striatum/physiopathology , Equilibrative Nucleoside Transporter 1/metabolism , Motor Activity/physiology , Receptor, Adenosine A2A/metabolism , Adenosine A2 Receptor Agonists/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Central Nervous System Depressants/administration & dosage , Circadian Rhythm/drug effects , Corpus Striatum/drug effects , Equilibrative Nucleoside Transporter 1/genetics , Ethanol/administration & dosage , Gene Expression , Light , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Period Circadian Proteins/metabolism , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL