Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Genes (Basel) ; 15(9)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39336824

ABSTRACT

Background: Climate change is leading to severe and long-term droughts in European forest ecosystems. can have profound effects on various physiological processes, including photosynthesis, gene expression patterns, and nutrient uptake at the developmental stage of young trees. Objectives: Our study aimed to test the hypothesis that the application of silica (SiO2) influences photosynthetic efficiency and gene expression in 1- to 2-year-old Fagus sylvatica (L.) seedlings. Additionally, we aimed to assess whether silicon application positively influences the structural properties of leaves and roots. To determine whether the plant physiological responses are genotype-specific, seedlings of four geographically different provenances were subjected to a one-year evaluation under greenhouse conditions. Methods: We used the Kruskal-Wallis test followed by Wilcoxon's test to evaluate the differences in silicon content and ANOVA followed by Tukey's test to evaluate the physiological responses of seedlings depending on treatment and provenance. Results: Our results showed a significantly higher Si content in the roots compared with the leaves, regardless of provenance and treatment. The most significant differences in photosynthetic performance were found in trees exposed to Si treatment, but the physiological responses were generally nuanced and provenance-dependent. Expression of hsp70 and hsp90 was also increased in leaf tissues of all provenances. These results provide practical insights that Si can improve the overall health and resilience of beech seedlings in nursery and forest ecosystems, with possible differences in the beneficial role of silicon application arising from the large differences in wild populations of forest tree species.


Subject(s)
Droughts , Fagus , Gene Expression Regulation, Plant , Photosynthesis , Seedlings , Silicon , Fagus/genetics , Fagus/drug effects , Fagus/metabolism , Photosynthesis/drug effects , Photosynthesis/genetics , Seedlings/genetics , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Silicon/pharmacology , Silicon/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Leaves/genetics , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Stress, Physiological/drug effects , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism
2.
Int J Mol Sci ; 25(17)2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39273679

ABSTRACT

Breast cancer has the highest incidence rate among all malignancies worldwide. Its high mortality is mainly related to the occurrence of multidrug resistance, which significantly limits therapeutic options. In this regard, there is an urgent need to develop compounds that would overcome this phenomenon. There are few reports in the literature that selenium compounds can modulate the activity of P-glycoprotein (MDR1). Therefore, we performed in silico studies and evaluated the effects of the novel selenoesters EDAG-1 and EDAG-8 on BCRP, MDR1, and MRP1 resistance proteins in MCF-7 and MDA-MB-231 breast cancer cells. The cytometric analysis showed that the tested compounds (especially EDAG-8) are inhibitors of BCRP, MDR1, and MRP1 efflux pumps (more potent than the reference compounds-novobiocin, verapamil, and MK-571). An in silico study correlates with these results, suggesting that the compound with the lowest binding energy to these transporters (EDAG-8) has a more favorable spatial structure affecting its anticancer activity, making it a promising candidate in the development of a novel anticancer agent for future breast cancer therapy.


Subject(s)
Breast Neoplasms , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemistry , Drug Resistance, Multiple/drug effects , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , MCF-7 Cells , Neoplasm Proteins/metabolism , Neoplasm Proteins/antagonists & inhibitors , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Esters/pharmacology , Esters/chemistry , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
3.
Molecules ; 29(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124943

ABSTRACT

Cancer is the second leading cause of death in the world following cardiovascular disease. Its treatment, including radiation therapy and surgical removal of the tumour, is based on pharmacotherapy, which prompts a constant search for new and more effective drugs. There are high costs associated with designing, synthesising, and marketing new substances. Drug repositioning is an attractive solution. Fluoroquinolones make up a group of synthetic antibiotics with a broad spectrum of activity in bacterial diseases. Moreover, those compounds are of particular interest to researchers as a result of reports of their antiproliferative effects on the cells of the most lethal cancers. This article presents the current progress in the development of new fluoroquinolone derivatives with potential anticancer and cytotoxic activity, as well as structure-activity relationships, along with possible directions for further development.


Subject(s)
Antineoplastic Agents , Fluoroquinolones , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacology , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Neoplasms/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Repositioning , Cell Proliferation/drug effects
4.
Molecules ; 29(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38999109

ABSTRACT

In the presented work, a series of 22 hybrids of 8-quinolinesulfonamide and 1,4-disubstituted triazole with antiproliferative activity were designed and synthesised. The title compounds were designed using molecular modelling techniques. For this purpose, machine-learning, molecular docking, and molecular dynamics methods were used. Calculations of the pharmacokinetic parameters (connected with absorption, distribution, metabolism, excretion, and toxicity) of the hybrids were also performed. The new compounds were synthesised via a copper-catalysed azide-alkyne cycloaddition reaction (CuAAC). 8-N-Methyl-N-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methyl}quinolinesulfonamide was identified in in silico studies as a potential strong inhibitor of Rho-associated protein kinase and as a compound that has an appropriate pharmacokinetic profile. The results obtained from in vitro experiments confirm the cytotoxicity of derivative 9b in four selected cancer cell lines and the lack of cytotoxicity of this derivative towards normal cells. The results obtained from silico and in vitro experiments indicate that the introduction of another quinolinyl fragment into the inhibitor molecule may have a significant impact on increasing the level of cytotoxicity toward cancer cells and indicate a further direction for future research in order to find new substances suitable for clinical applications in cancer treatment.


Subject(s)
Antineoplastic Agents , Machine Learning , Molecular Docking Simulation , Quinolines , Sulfonamides , Triazoles , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Dynamics Simulation , Molecular Structure
5.
Trends Plant Sci ; 28(10): 1144-1165, 2023 10.
Article in English | MEDLINE | ID: mdl-37331842

ABSTRACT

The discovery of the CRISPR/Cas genome-editing system has revolutionized our understanding of the plant genome. CRISPR/Cas has been used for over a decade to modify plant genomes for the study of specific genes and biosynthetic pathways as well as to speed up breeding in many plant species, including both model and non-model crops. Although the CRISPR/Cas system is very efficient for genome editing, many bottlenecks and challenges slow down further improvement and applications. In this review we discuss the challenges that can occur during tissue culture, transformation, regeneration, and mutant detection. We also review the opportunities provided by new CRISPR platforms and specific applications related to gene regulation, abiotic and biotic stress response improvement, and de novo domestication of plants.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Plant Breeding , Genome, Plant/genetics , Crops, Agricultural/genetics , Plants, Genetically Modified/genetics
6.
Curr Psychol ; : 1-10, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34848937

ABSTRACT

This study validated Polish versions of the Coronavirus Stress Measure (CSM) and the COVID-19 Burnout Scale (COVID-19-BS) to measure stress and burnout associated with COVID-19. Participants were 431 Polish young adults (72.6% female; Meanage = 26.61 ± 12.63). Confirmatory factor analysis verified a one-factor solution for both the CSM and the COVID-19-BS. Both scales had high internal consistency reliability. Coronavirus stress and COVID-19 burnout were positively related to depression, anxiety, and stress and negatively related to resilience. The coronavirus stress and COVID-19 burnout were correlated with elevated levels of depression, anxiety, and stress over and beyond resilience, age, and gender. Findings suggest that the Polish versions of the CSM and the COVID-19-BS are valid scales to measure stress and burnout related to COVID-19. Findings also demonstrated that the coronavirus stress and COVID-19 burnout experienced during the later stages of the pandemic might be a permanent risk factor for mental health problems.

7.
Pathogens ; 10(11)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34832516

ABSTRACT

Ash shoot dieback has now spread throughout Europe. It is caused by an interaction between fungi that attack shoots (Hymenoscyphus fraxineus) and roots (Armillaria spp., in our case Armillaria gallica). While detection of the pathogen is relatively easy when disease symptoms are present, it is virtually impossible when the infestation is latent. Such situations occur in nurseries when seedlings become infected (the spores are carried by the wind several dozen miles). The diseases are masked by pesticides, fertilisers, and adequate irrigation to protect the plants. Root rot that develops in the soil is also difficult to detect. Currently, there is a lack of equipment that can detect root rot pathogens without digging up root systems, which risks damaging trees. For this reason, the use of an electronic nose to detect pathogens in infected tissue of ash trees grown in pots and inoculated with the above fungi was attempted. Disease symptoms were detected in all ash trees exposed to natural infection (via spores) in the forest. The electronic nose was able to detect the pathogens (compared to the control). Detection of the pathogens in seedlings will enable foresters to remove diseased trees and prevent the path from nursery to forest plantations by such selection.

8.
Molecules ; 25(23)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291490

ABSTRACT

Fungi and oomycetes release volatiles into their environment which could be used for olfactory detection and identification of these organisms by electronic-nose (e-nose). The aim of this study was to survey volatile compound emission using an e-nose device and to identify released molecules through solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) analysis to ultimately develop a detection system for fungi and fungi-like organisms. To this end, cultures of eight fungi (Armillaria gallica, Armillaria ostoyae, Fusarium avenaceum, Fusarium culmorum, Fusarium oxysporum, Fusarium poae, Rhizoctonia solani, Trichoderma asperellum) and four oomycetes (Phytophthora cactorum, P. cinnamomi, P. plurivora, P. ramorum) were tested with the e-nose system and investigated by means of SPME-GC/MS. Strains of F. poae, R. solani and T. asperellum appeared to be the most odoriferous. All investigated fungal species (except R. solani) produced sesquiterpenes in variable amounts, in contrast to the tested oomycetes strains. Other molecules such as aliphatic hydrocarbons, alcohols, aldehydes, esters and benzene derivatives were found in all samples. The results suggested that the major differences between respective VOC emission ranges of the tested species lie in sesquiterpene production, with fungi emitting some while oomycetes released none or smaller amounts of such molecules. Our e-nose system could discriminate between the odors emitted by P. ramorum, F. poae, T. asperellum and R. solani, which accounted for over 88% of the PCA variance. These preliminary results of fungal and oomycete detection make the e-nose device suitable for further sensor design as a potential tool for forest managers, other plant managers, as well as regulatory agencies such as quarantine services.


Subject(s)
Fungi/chemistry , Gas Chromatography-Mass Spectrometry/methods , Oomycetes/chemistry , Solid Phase Microextraction/methods , Volatile Organic Compounds/chemistry , Electronic Nose , Odorants/analysis , Smell
9.
Sci Rep ; 9(1): 8195, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31160683

ABSTRACT

Fusarium circinatum is a harmful pathogenic fungus mostly attacking Pinus species and also Pseudotsuga menziesii, causing cankers in trees of all ages, damping-off in seedlings, and mortality in cuttings and mother plants for clonal production. This fungus is listed as a quarantine pest in several parts of the world and the trade of potentially contaminated pine material such as cuttings, seedlings or seeds is restricted in order to prevent its spread to disease-free areas. Inspection of plant material often relies on DNA testing and several conventional or real-time PCR based tests targeting F. circinatum are available in the literature. In this work, an international collaborative study joined 23 partners to assess the transferability and the performance of nine molecular protocols, using a wide panel of DNA from 71 representative strains of F. circinatum and related Fusarium species. Diagnostic sensitivity, specificity and accuracy of the nine protocols all reached values >80%, and the diagnostic specificity was the only parameter differing significantly between protocols. The rates of false positives and of false negatives were computed and only the false positive rates differed significantly, ranging from 3.0% to 17.3%. The difference between protocols for some of the performance values were mainly due to cross-reactions with DNA from non-target species, which were either not tested or documented in the original articles. Considering that participating laboratories were free to use their own reagents and equipment, this study demonstrated that the diagnostic protocols for F. circinatum were not easily transferable to end-users. More generally, our results suggest that the use of protocols using conventional or real-time PCR outside their initial development and validation conditions should require careful characterization of the performance data prior to use under modified conditions (i.e. reagents and equipment). Suggestions to improve the transfer are proposed.


Subject(s)
Fusarium/isolation & purification , Molecular Biology/standards , Pinus/microbiology , Plant Diseases/microbiology , Polymerase Chain Reaction/methods , DNA, Fungal/analysis , DNA, Plant , False Positive Reactions , Fusarium/genetics , International Cooperation , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity
10.
Macromol Biosci ; 16(5): 676-85, 2016 05.
Article in English | MEDLINE | ID: mdl-26757483

ABSTRACT

Thin polymer films that prevent the adhesion of bacteria are of interest as coatings for the development of infection-resistant biomaterials. This study investigates the influence of grafting density and film thickness on the adhesion of Staphylococcus epidermidis to poly(poly(ethylene glycol)methacrylate) (PPEGMA) and poly(2-hydroxyethyl methacrylate) (PHEMA) brushes prepared via surface-initiated atom transfer radical polymerization (SI-ATRP). These brushes are compared with poly(ethylene glycol) (PEG) brushes, which are obtained by grafting PEG onto an epoxide-modified substrate. Except for very low grafting densities (ρ = 1%), crystal violet staining experiments show that the PHEMA and PPEGMA brushes are equally effective as the PEG-modified surfaces in preventing S. epidermis adhesion and do not reveal any significant variations as a function of film thickness or grafting density. These results indicate that brushes generated by SI-ATRP are an attractive alternative to grafted-onto PEG films for the preparation of surface coatings that resist bacterial adhesion.


Subject(s)
Bacterial Adhesion/drug effects , Biocompatible Materials/pharmacology , Infections/drug therapy , Staphylococcus epidermidis/drug effects , Biocompatible Materials/chemistry , Epoxy Compounds/chemistry , Humans , Infections/microbiology , Methacrylates/chemistry , Methacrylates/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Polyhydroxyethyl Methacrylate/chemistry , Polyhydroxyethyl Methacrylate/pharmacology , Polymerization , Polymers/chemistry , Polymers/pharmacology , Polymethacrylic Acids , Staphylococcus epidermidis/pathogenicity , Surface Properties
11.
Cytotherapy ; 17(9): 1280-91, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26276009

ABSTRACT

BACKGROUND AIMS: Epstein-Barr virus (EBV)-associated post-transplant lymphoproliferative disorders (PTLD) belong to the most dreaded complications of immunosuppression. The efficacy of EBV-specific T-cell transfer for PTLD has been previously shown, yet the optimal choice of EBV-derived antigens inducing polyclonal CD4(+) and CD8(+) T cells that cover a wide range of human leukocyte antigen types and efficiently control PTLD remains unclear. METHODS: A pool of 125 T-cell epitopes from seven latent and nine lytic EBV-derived proteins (EBVmix) and peptide pools of EBNA1, EBNA3c, LMP2a and BZLF1 were used to determine T-cell frequencies and to isolate T cells through the use of the interferon (IFN)-γ cytokine capture system. We further evaluated the phenotype and functionality of the generated T-cell lines in vitro. RESULTS: EBVmix induced significantly higher T-cell frequencies and allowed selecting more CD4(+)IFN-γ(+) and CD8(+)IFN-γ(+) cells than single peptide pools. T cells of all specificities expanded similarly in vitro, recognized cognate antigen, and, to a lower extent, EBV-infected cells, exerted moderate cytotoxicity and showed reduced alloreactivity. However, EBVmix-specific cells most efficiently controlled EBV-infected lymphoblastoid cell lines (LCLs). This control was mainly mediated by EBV-specific CD8(+) cells with an oligoclonal epitope signature covering both latent and lytic viral proteins. Notably, EBV-specific CD4(+) cells unable to control LCLs produced significantly less perforin and granzyme B, probably because of limited LCL epitope presentation. CONCLUSIONS: EBVmix induces a broader T-cell response, probably because of its coverage of latent and lytic EBV-derived proteins that may be important to control EBV-transformed B cells and might offer an improvement of T-cell therapies.


Subject(s)
B-Lymphocytes/virology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Transformation, Viral/immunology , Epstein-Barr Virus Infections/therapy , Herpesvirus 4, Human/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/transplantation , Cells, Cultured , Epitopes, T-Lymphocyte/immunology , Epstein-Barr Virus Nuclear Antigens/immunology , Granzymes/metabolism , Humans , Interferon-gamma/immunology , Perforin/biosynthesis , Trans-Activators/immunology , Viral Matrix Proteins/immunology
12.
J Infect Dis ; 211(8): 1251-61, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25367298

ABSTRACT

BACKGROUND: Aspergillus and Mucorales species cause severe infections in patients after hematopoietic stem cell transplantation (HSCT). Induction of antifungal CD4(+) T-helper type 1 (Th1) immunity is an appealing strategy to combat these infections. Immunotherapeutic approaches are so far limited because of a lack of antigens inducing protective T cells, their elaborate production, and the need of targeting a broad spectrum of pathogenic fungi. METHODS: We examined the response to different Aspergillus fumigatus proteins in healthy individuals and patients after HSCT and compared rapid selection protocols for fungus-specific T cells based on CD137 or CD154 expression. RESULTS: The A. fumigatus proteins Crf1, Gel1, and Pmp20 induced strong Th1 responses in healthy individuals. T cells specific for these antigens expanded in patients with active invasive aspergillosis, indicating their contribution to infection control. Th1 cells specific for the 3 proteins can be selected with similar specificity within 24 hours, based on CD137 or CD154 expression. These cells recognize naturally processed A. fumigatus and the multispecific T-cell lines, directed against all 3 proteins, especially those selected by CD154, additionally cross-react to different Aspergillus and Mucorales species. CONCLUSIONS: These findings may form the basis for adoptive T-cell transfer for prophylaxis or treatment in patients with these devastating infections.


Subject(s)
Antigens, Fungal/immunology , Aspergillosis/immunology , Aspergillus fumigatus/immunology , CD40 Ligand/immunology , Th1 Cells/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Adult , Aspergillosis/microbiology , Female , Fungal Proteins/immunology , Hematopoietic Stem Cell Transplantation/methods , Humans , Lymphocyte Activation/immunology , Male , Middle Aged
13.
Antibiotics (Basel) ; 3(3): 378-97, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-27025752

ABSTRACT

The number of implanted medical devices is steadily increasing and has become an effective intervention improving life quality, but still carries the risk of infection. These infections are mainly caused by biofilm-forming staphylococci that are difficult to treat due to the decreased susceptibility to both antibiotics and host defense mechanisms. To understand the particular pathogenesis and treatment tolerance of implant-associated infection (IAI) animal models that closely resemble human disease are needed. Applications of the tissue cage and catheter abscess foreign body infection models in the mouse will be discussed herein. Both models allow the investigation of biofilm and virulence of various bacterial species and a comprehensive insight into the host response at the same time. They have also been proven to serve as very suitable tools to study the anti-adhesive and anti-infective efficacy of different biomaterial coatings. The tissue cage model can additionally be used to determine pharmacokinetics, efficacy and cytotoxicity of antimicrobial compounds as the tissue cage fluid can be aspirated repeatedly without the need to sacrifice the animal. Moreover, with the advance in innovative imaging systems in rodents, these models may offer new diagnostic measures of infection. In summary, animal foreign body infection models are important tools in the development of new antimicrobials against IAI and can help to elucidate the complex interactions between bacteria, the host immune system, and prosthetic materials.

14.
Antimicrob Agents Chemother ; 57(1): 333-42, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23114780

ABSTRACT

Treatment options are limited for implant-associated infections (IAI) that are mainly caused by biofilm-forming staphylococci. We report here on the activity of the serrulatane compound 8-hydroxyserrulat-14-en-19-oic acid (EN4), a diterpene isolated from the Australian plant Eremophila neglecta. EN4 elicited antimicrobial activity toward various Gram-positive bacteria but not to Gram-negative bacteria. It showed a similar bactericidal effect against logarithmic-phase, stationary-phase, and adherent Staphylococcus epidermidis, as well as against methicillin-susceptible and methicillin-resistant S. aureus with MICs of 25 to 50 µg/ml and MBCs of 50 to 100 µg/ml. The bactericidal activity of EN4 was similar against S. epidermidis and its Δica mutant, which is unable to produce polysaccharide intercellular adhesin-mediated biofilm. In time-kill studies, EN4 exhibited a rapid and concentration-dependent killing of staphylococci, reducing bacterial counts by >3 log(10) CFU/ml within 5 min at concentrations of >50 µg/ml. Investigation of the mode of action of EN4 revealed membranolytic properties and a general inhibition of macromolecular biosynthesis, suggesting a multitarget activity. In vitro-tested cytotoxicity on eukaryotic cells was time and concentration dependent in the range of the MBCs. EN4 was then tested in a mouse tissue cage model, where it showed neither bactericidal nor cytotoxic effects, indicating an inhibition of its activity. Inhibition assays revealed that this was caused by interactions with albumin. Overall, these findings suggest that, upon structural changes, EN4 might be a promising pharmacophore for the development of new antimicrobials to treat IAI.


Subject(s)
Anti-Bacterial Agents/pharmacology , Diterpenes/pharmacology , Eremophila Plant/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Prosthesis-Related Infections/drug therapy , Staphylococcal Infections/drug therapy , Staphylococcus epidermidis/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Cell Survival/drug effects , Colony Count, Microbial , Diterpenes/chemistry , Diterpenes/isolation & purification , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Plant Extracts/chemistry , Prostheses and Implants/microbiology , Prosthesis-Related Infections/microbiology , Serum Albumin/chemistry , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/growth & development
15.
J Immunol ; 188(8): 4103-12, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22430737

ABSTRACT

Thioredoxin (Trx)-1 is a small, ubiquitously expressed redox-active protein with known important cytosolic functions. However, Trx1 is also upregulated in response to various stress stimuli, is found both at the cell surface and secreted into plasma, and has known anti-inflammatory and antiapoptotic properties. Previous animal studies have demonstrated that exogenous Trx1 delivery can have therapeutic effects in a number of disease models and have implicated an interaction of Trx1 with the complement system. We found that Trx1 is expressed in a redox-active form at the surface of HUVEC and acts as an inhibitor of complement deposition in a manner dependent on its Cys-Gly-Pro-Cys active site. Inhibition occurred at the point of the C5 convertase of complement, regulating production of C5a and the membrane attack complex. A truncated form of Trx1 also exists in vivo, Trx80, which has separate nonoverlapping functions compared with the full-length Trx1. We found that Trx80 activates the classical and alternative pathways of complement activation, leading to C5a production, but the inflammatory potential of this was also limited by the binding of inhibitors C4b-binding protein and factor H. This study adds a further role to the known anti-inflammatory properties of Trx1 and highlights the difference in function between the full-length and truncated forms.


Subject(s)
Complement C5a/immunology , Peptide Fragments/immunology , Thioredoxins/immunology , Animals , Complement Activation , Complement C3-C5 Convertases/immunology , Complement C3-C5 Convertases/metabolism , Complement C4b-Binding Protein/immunology , Complement C4b-Binding Protein/metabolism , Complement C5a/metabolism , Complement Factor H/immunology , Complement Factor H/metabolism , Disease Models, Animal , Gene Expression , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peritonitis/immunology , Peritonitis/metabolism , Peritonitis/pathology , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Signal Transduction , Thioredoxins/chemistry , Thioredoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL