ABSTRACT
The acid-promoted epoxidation of vegetable oils was studied using a variety of acidic ion exchange resins as heterogeneous acid catalysts. Quantitative and selective epoxidation of a series of vegetable oils with different composition of saturated, mono-, di- and tri-unsaturated fatty acids was obtained upon identification of the more efficient catalyst and experimental conditions. Furthermore, optimized reaction conditions were successfully applied to the epoxidation of a waste cooking oil, thus extending our procedure to the valorization of a biowaste, an area of increasing importance within a more sustainable society. The use of quantitative 1HNMR besides making accurate evaluation of the amounts of reagents to be employed and of the selectivity, allowed facile and rapid quantification of mono-, di- and tri-epoxides, thus providing an indirect indication on the fatty acid composition of the vegetable oils, even in the presence of very low quantities of linolenic acid.
ABSTRACT
The effects of ball milling treatment on both the structure and properties of guar gum (GG), tara gum (TG), and methylcellulose (MC) were analyzed prior to assessing their potential interactions with starch components when they are used alone or in blends in a corn starch-rice flour system. X-ray diffraction profiles showed that the ball milling caused a reduction in the crystallin domain and, in turn, a diminished viscosity of the GG aqueous solutions. Despite an increase in its viscosity properties, effects on TG were minimal, while the milled MC exhibited reduced crystallinity, but similar viscosity. When both milled and un-milled hydrocolloids were individually added to the starch-flour system, the pasting properties of the resulting mixtures seemed to be affected by the type of hydrocolloid added rather than the structural changes induced by the treatment. All hydrocolloids increased the peak viscosity of the binary blends (especially pure GG), but only milled and un-milled MC showed values of setback and final viscosity similar to those of the individual starch. Ball milling seemed to be more effective when two combined hydrocolloids (milled GG and MC) were simultaneously used. No significant differences were observed in the viscoelastic properties of the blends, except for un-milled GG/starch, milled TG/starch, and milled MC/milled TG/starch gels.
ABSTRACT
For the first time, the synthesis of polymeric hydrogels containing cyclodextrins (CDs) obtained by frontal polymerization (FP) is reported. In particular, the effects of CDs on poly(2-hydroxyethylacrylate) hydrogel properties are investigated. In a first series of materials, ß-cyclodextrin is dispersed into the polymer matrix, while in the second one acryloyl-ß-cyclodextrin is grafted to poly(2-hydroxyethylacrylate) chains. FP parameters (front velocity and maximum temperature), swelling properties, glass transition temperatures and mechanical properties of the hydrogels are studied. Results show that both types of cyclodextrin influence the above properties, and the major effects are found for concentration higher than 1mol% of acryloyl-ß-cyclodextrin. Namely, a significant increase of glass transition temperature and of compression moduli are found. Finally, this study demonstrates that FP is a convenient technique to obtain CD-containing hydrogels, in which the type and amount of cyclodextrin can be suitably modulated to tune polymer properties, in function of the desired hydrogel applications.