Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters








Publication year range
1.
Membranes (Basel) ; 12(3)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35323740

ABSTRACT

Poly(norbornene)s and poly(ionic liquid)s are two different classes of attractive materials, which are known for their structural tunability and thermal stabilities, and have been extensively studied as gas separation membranes. The incorporation of ionic liquids (ILs) into the poly(norbornene) through post-polymerization has resulted in unique materials with synergistic properties. However, direct polymerization of norbornene-containing IL monomers as gas separation membranes are limited. To this end, a series of norbornene-containing imidazolium-based mono- and di-cationic ILs (NBM-mIm and NBM-DILs) with different connectivity and spacer lengths were synthesized and characterized spectroscopically. Subsequently, the poly(NBM-mIm) with bistriflimide [Tf2N-] and poly([NBM-DILs][Tf2N]2) comprising homo-, random-, and block- (co)polymers were synthesized via ring-opening metathesis polymerization using the air-stable Grubbs second-generation catalyst. Block copolymers (BCPs), specifically, [NBM-mIM][Tf2N] and [NBM-ImCnmIm] [Tf2N]2 (n = 4 and 6) were synthesized at two different compositions, which generated high molecular weight polymers with decent solubility relative to homo- and random (co)polymers of [NBM-DILs] [Tf2N]2. The prepared BCPs were efficiently analyzed by a host of analytical tools, including 1H-NMR, GPC, and WAXD. The successfully BCPs were cast into thin membranes ranging from 47 to 125 µm and their gas (CO2, N2, CH4, and H2) permeations were measured at 20 °C using a time-lag apparatus. These membranes displayed modest CO2 permeability in a non-linear fashion with respect to composition and a reverse trend in CO2/N2 permselectivity was observed, as a usual trade-off behavior between permeability and permselectivity.

2.
J Phys Chem B ; 125(14): 3653-3664, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33821644

ABSTRACT

Ionic liquids (ILs) are known to have tunable solvation properties, based on the pairing of different anions and cations, but the compositional landscape is vast and challenging to navigate efficiently. Some computational screening protocols are available, but they can be either time-consuming or difficult to implement. Herein, we perform a detailed investigation of the fundamental role of electrostatic interactions in these systems. We effectively develop a bridge between the previous volume-based approach with a quantum structure-property relationship approach to create fast, simple screening guidelines. We propose a new parameter that is applicable to both monovalent and multivalent ions, the ionic polarity index (IPI), which is defined as the ratio of the average electrostatic surface potential (V̅) of the ion to the net charge of the ion (q). The IPI correlation has been tested on a diverse data set of 121 ions, and reliable predictions can be obtained within a homologous series of IL compounds.

3.
Polymers (Basel) ; 13(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923351

ABSTRACT

This work introduces a series of vinyl-imidazolium-based polyelectrolyte composites, which were structurally modified via impregnation with multivalent imidazolium-benzene ionic liquids (ILs) or crosslinked with novel cationic crosslinkers which possess internal imidazolium cations and vinylimidazolium cations at the periphery. A set of eight [C4vim][Tf2N]-based membranes were prepared via UV-initiated free radical polymerization, including four composites containing di-, tri-, tetra-, and hexa-imidazolium benzene ILs and four crosslinked derivatives which utilized tri- and tetra- vinylimidazolium benzene crosslinking agents. Structural and functional characterizations were performed, and pure gas permeation data were collected to better understand the effects of "free" ILs dispersed in the polymeric matrix versus integrated ionic crosslinks on the transport behaviors of these thin films. These imidazolium PIL:IL composites exhibited moderately high CO2 permeabilities (~20-40 Barrer), a 4-7× increase relative to corresponding neat PIL, with excellent selectivities against N2 or CH4. The addition of imidazolium-benzene fillers with increased imidazolium content were shown to correspondingly enhance CO2 solubility (di- < tri- < tetra- < hexa-), with the [C4vim][Tf2N]: [Hexa(Im+)Benz ][Tf2N] composite showing the highest CO2 permeability (PCO2 = 38.4 Barrer), while maintaining modest selectivities (αCO2/CH4 = 20.2, αCO2/N2 = 23.6). Additionally, these metrics were similarly improved with the integration of more ionic content bonded to the polymeric matrix; increased PCO2 with increased wt% of the tri- and tetra-vinylimidazolium benzene crosslinking agent was observed. This study demonstrates the intriguing interactions and effects of ionic additives or crosslinkers within a PIL matrix, revealing the potential for the tuning of the properties and transport behaviors of ionic polymers using ionic liquid-inspired small molecules.

4.
J Phys Chem B ; 125(14): 3665-3676, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33797921

ABSTRACT

Ionic liquids (ILs) can serve as effective CO2 solvents with an appropriate selection of different anions and cations. However, due to the large library of potential IL compositions, rapid screening methods are needed for characterizing and ranking the expected properties. We have recently proposed the ionic polarity index (IPI) parameter, effectively connecting volume-based approaches and electrostatic potential analyses and providing a single metric that can potentially be used to rapidly screen for desirable IL properties. In this work, the corresponding anion and cation IPIs are used to generate correlations with respect to the CO2 volumetric solubility in ILs. The relationships are generally applicable to groups of ILs within a homologous ion series, and this can be particularly valuable for prescreening different ion pairings for maximizing gas solvation performance.

5.
Phys Chem Chem Phys ; 22(36): 20618-20633, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32966430

ABSTRACT

For many years, experimental and theoretical studies have investigated the solubility of CO2 in a variety of ionic liquids (ILs), but the overarching absorption mechanism is still unclear. Currently, two different factors are believed to dominate the absorption performance: (a) the fractional free volume (FFV) accessible for absorption; and (b) the nature of the CO2 interactions with the anion species. The FFV is often more influential than the specific choice of the anion, but neither mechanism provides a complete picture. Herein, we have attempted to decouple these mechanisms in order to provide a more definitive molecular-level perspective of CO2 absorption in IL solvents. We simulate a series of nine different multivalent ILs comprised of imidazolium cations and sulfonate/sulfonimide anions tethered to benzene rings, along with a comprehensive analysis of the CO2 absorption and underlying molecular-level features. We find that the CO2 solubility has a very strong, linear correlation with respect to FFV, but only when comparisons are constrained to a common anion species. The choice of anion results in a fundamental remapping of the correlation between CO2 solubility and FFV. Overall, the free volume effect dominates in the ILs with smaller FFV values, while the choice of anion becomes more important in the systems with larger FFVs. Our proposed mechanistic map is intended to provide a more consistent framework for guiding further IL design for gas absorption applications.

6.
Polymers (Basel) ; 12(6)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486156

ABSTRACT

Here we introduce the synthesis and thermal properties of a series of sophisticated imidazolium ionenes with alternating amide-amide or amide-imide backbone functionality, and investigate the structural effects of mono(imidazolium) and unprecedented tris(imidazolium) ionic liquids (ILs) in these ionenes. The new set of poly(amide-amide) (PAA) and poly(amide-imide) (PAI) ionenes represent the intersection of conventional high-performance polymers with the ionene archetype-presenting polymers with alternating functional and ionic elements precisely sequenced along the backbone. The effects of polymer composition on the thermal properties and morphology were analyzed. Five distinct polymer backbones were synthesized and combined with a stoichiometric equivalent of the IL 1-benzyl-3-methylimidazolium bistriflimide ([Bnmim][Tf2N]), which were studied to probe the self-assembly, structuring, and contributions of intermolecular forces when IL is added. Furthermore, three polyamide (PA) or polyimide (PI) ionenes with simpler xylyl linkages were interfaced with [Bnmim][Tf2N] as well as a novel amide-linked tris(imidazolium) IL, to demonstrate the structural changes imparted by the inclusion of functional, ionic additives dispersed within the ionene matrix. This work highlights the possibilities for utilizing concepts from small molecules which exhibit supramolecular self-assembly to guide creative design and manipulate the structuring of ionenes.

7.
ChemSusChem ; 13(12): 3122-3126, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32314494

ABSTRACT

Imidazolium-based ionenes are known to be high-performance materials for a great variety of applications. The preparation of these polymers requires the use of bis-imidazole starting monomers, which are commonly prepared by using toxic chloride reagents. In this study, bis-imidazole monomers are synthesized by organocatalytic chemical recycling of discarded plastics through chemical depolymerization. By using poly(ethylene terephthalate) and bisphenol A polycarbonate as starting materials, different monomers containing amide or urea functionalities are prepared to produce high-molecular-weight ionic polymers. These novel ionenes show excellent elastomeric and self-healing behavior, serving as a promising means to expand the exploration of plastic wastes as a source of new materials.

8.
Membranes (Basel) ; 10(3)2020 Mar 22.
Article in English | MEDLINE | ID: mdl-32235739

ABSTRACT

Here, we report the synthesis and thermophysical properties of seven primarily aromatic, imidazolium-based polyamide ionenes. The effects of varied para-, meta-, and ortho-connectivity, and spacing of ionic and amide functional groups, on structural and thermophysical properties were analyzed. Suitable, robust derivatives were cast into thin films, neat, or with stoichiometric equivalents of the ionic liquid (IL) 1-benzy-3-methylimidazolium bistriflimide ([Bnmim][Tf2N]), and the gas transport properties of these membranes were measured. Pure gas permeabilities and permselectivities for N2, CH4, and CO2 are reported. Consistent para-connectivity in the backbone was shown to yield the highest CO2 permeability and suitability for casting as a very thin, flexible film. Derivatives containing terephthalamide segments exhibited the highest CO2/CH4 and CO2/N2 selectivities, yet CO2 permeability decreased with further deviation from consistent para-linkages.

9.
ACS Omega ; 4(2): 3439-3448, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-31459559

ABSTRACT

It is highly desirable to integrate the CO2 solubility benefits of ionic liquids (ILs) in polymeric membrane systems for effective CO2 separations. Herein, we are exclusively exploring a series of four novel imidazolium-mediated Tröger's base (TB)-containing ionene polymers for enhanced CO2 separation. The two diimidazole-functionalized Tröger's base monomers synthesized from "ortho"- and "para"-substituted imidazole anilines were polymerized with equimolar amounts of two different aromatic and aliphatic comonomers (α,α'-dichloro-p-xylene and 1,10-dibromodecane, respectively) via Menshutkin reactions to obtain four respective ionene polymers ([Im-TB(o&p)-Xy][Cl] and ([Im-TB(o&p)-C10][Br], respectively). The resulting ionene polymers having halide anions were exchanged with [Tf2N]- anions, yielding a novel Tröger's base material [Im-TB(x)-R][Tf2N] or "Im-TB-Ionenes". The structural and physical properties as well as the gas separation behaviors of the copolymers of aromatic and aliphatic Im-TB-Ionenes have been extensively investigated with respect to the regiochemistry of imidazolium groups at the ortho and para positions of the TB unit. The imidazolium-mediated TB-Ionenes showed high CO2 solubility and hence an excellent CO2/CH4 permselectivity of 82.5. The Im-TB-Ionenes also displayed good thermal and mechanical stabilities.

10.
Membranes (Basel) ; 9(7)2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31277233

ABSTRACT

Three new isomeric 6FDA-based polyimide-ionenes, with imidazolium moieties and varying regiochemistry (para-, meta-, and ortho- connectivity), and composites with three different ionic liquids (ILs) have been developed as gas separation membranes. The structural-property relationships and gas separation behaviors of the newly developed 6FDA polyimide-ionene + IL composites have been extensively studied. All the 6FDA-based polyimide-ionenes exhibited good compatibility with the ILs and produced homogeneous hybrid membranes with the high thermal stability of ~380 °C. Particularly, [6FDA I4A pXy][Tf2N] ionene + IL hybrids having [C4mim][Tf2N] and [Bnmim][Tf2N] ILs offered mechanically stable matrixes with high CO2 affinity. The permeability of CO2 was increased by factors of 2 and 3 for C4mim and Bnmim hybrids (2.15 to 6.32 barrers), respectively, compared to the neat [6FDA I4A pXy][Tf2N] without sacrificing their permselectivity for CO2/CH4 and CO2/N2 gas pairs.

11.
MRS Adv ; 3(52): 3091-3102, 2018.
Article in English | MEDLINE | ID: mdl-30298102

ABSTRACT

A new family of six ionenes containing aromatic amide linkages has been synthesized from ready available starting materials at scales up to ~50 g. These ionene-polyamides are all constitutional isomers and vary only in the regiochemistry of the amide linkages (para, meta) and xylyl linkages (ortho, meta, para) which are present in the polymer backbone. This paper details the synthesis of these ionenes and associated characterizations. Ionene-polyamides exhibit relatively low melting points (~150 oC) allowing them to be readily processed into films and other objects. These ionene-polyamide materials are being developed for further study as polymer membranes for the separations of gases such as CO2, N2, CH4 and H2.

SELECTION OF CITATIONS
SEARCH DETAIL