Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters








Publication year range
1.
Int J Biol Macromol ; 277(Pt 1): 133891, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39025190

ABSTRACT

Electronic systems and telecommunications have grown in popularity, leading to increasing electromagnetic (EM) radiation pollution. Environmental protection from EM radiation demands the use of environmentally friendly products. The design of EM interference (EMI) shielding materials using resources like nanocellulose (NC) is gaining traction. Cellulose, owing to its biocompatibility, biodegradability, and excellent mechanical and thermal properties, has attracted significant interest for developing EMI shielding materials. Recent advancements in cellulose-based EMI shielding materials, particularly modified cellulosic composites, are highlighted in this study. By incorporating metallic coatings compounded with conductive fillers and modified with inherently conductive elements, conductivity and effectiveness of EMI shielding can be significantly improved. This review discusses the introduction of EMI shields, cellulose, and NC, assessing environmentally friendly EMI shield options and diverse NC-based composite EMI shields considering their low reflectivity. The study offers new insights into designing advanced NC-based conductive composites for EMI shielding applications.


Subject(s)
Cellulose , Electric Conductivity , Cellulose/chemistry , Nanocomposites/chemistry , Electromagnetic Radiation , Radiation Protection/methods
2.
Materials (Basel) ; 16(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37687739

ABSTRACT

Poly (lactic acid) or polylactide (PLA) has gained widespread use in many industries and has become a commodity polymer. Its potential as a perfect replacement for petrochemically made plastics has been constrained by its extreme flammability and propensity to flow in a fire. Traditional flame-retardants (FRs), such as organo-halogen chemicals, can be added to PLA without significantly affecting the material's mechanical properties. However, the restricted usage of these substances causes them to bioaccumulate and endanger plants and animals. Research on PLA flame-retardants has mostly concentrated on organic and inorganic substances for the past few years. Meanwhile, there has been a significant increase in renewed interest in creating environmentally acceptable flame-retardants for PLA to maintain the integrity of the polymer, which is the current trend. This article reviews recent advancements in novel FRs for PLA. The emphasis is on two-dimensional (2D) nanosystems and the composites made from them that have been used to develop PLA nanocomposite (NCP) systems that are flame retarding. The association between FR loadings and efficiency for different FR-PLA systems is also briefly discussed in the paper, as well as their influence on processing and other material attributes. It is unmistakably established from the literature that adding 2D nanoparticles to PLA matrix systems reduces their flammability by forming an intumescent char/carbonized surface layer. This creates a barrier effect that successfully blocks the filtration of volatiles and oxygen, heat and mass transfer, and the release of combustible gases produced during combustion.

3.
ACS Omega ; 8(31): 28002-28025, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576662

ABSTRACT

Porous structures with sizes between the submicrometer and nanometer scales can be produced using efficient and adaptable electrospinning technology. However, to approximate desirable structures, the construction lacks mechanical sophistication and conformance and requires three-dimensional solitary or multifunctional structures. The diversity of high-performance polymers and blends has enabled the creation of several porous structural conformations for applications in advanced materials science, particularly in biomedicine. Two promising technologies can be combined, such as electrospinning with 3D printing or additive manufacturing, thereby providing a straightforward yet flexible technique for digitally controlled shape-morphing fabrication. The hierarchical integration of configurations is used to imprint complex shapes and patterns onto mesostructured, stimulus-responsive electrospun fabrics. This technique controls the internal stresses caused by the swelling/contraction mismatch in the in-plane and interlayer regions, which, in turn, controls the morphological characteristics of the electrospun membranes. Major innovations in 3D printing, along with additive manufacturing, have led to the production of materials and scaffold systems for tactile and wearable sensors, filtration structures, sensors for structural health monitoring, tissue engineering, biomedical scaffolds, and optical patterning. This review discusses the synergy between 3D printing and electrospinning as a constituent of specific microfabrication methods for quick structural prototypes that are expected to advance into next-generation constructs. Furthermore, individual techniques, their process parameters, and how the fabricated novel structures are applied holistically in the biomedical field have never been discussed in the literature. In summary, this review offers novel insights into the use of electrospinning and 3D printing as well as their integration for cutting-edge applications in the biomedical field.

4.
RSC Adv ; 13(27): 18568-18604, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37346946

ABSTRACT

Water is an indispensable part of human life that affects health and food intake. Water pollution caused by rapid industrialization, agriculture, and other human activities affects humanity. Therefore, researchers are prudent and cautious regarding the use of novel materials and technologies for wastewater remediation. Graphdiyne (GDY), an emerging 2D nanomaterial, shows promise in this direction. Graphdiyne has a highly symmetrical π-conjugated structure consisting of uniformly distributed pores; hence, it is favorable for applications such as oil-water separation and organic-pollutant removal. The acetylenic linkage in GDY can strongly interact with metal ions, rendering GDY applicable to heavy-metal adsorption. In addition, GDY membranes that exhibit 100% salt rejection at certain pressures are potential candidates for wastewater treatment and water reuse via desalination. This review provides deep insights into the structure, properties, and synthesis methods of GDY, owing to which it is a unique, promising material. In the latter half of the article, various applications of GDY in desalination and wastewater treatment have been detailed. Finally, the prospects of these materials have been discussed succinctly.

5.
Int J Biol Macromol ; 241: 124514, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37086769

ABSTRACT

A series of graphene oxide@cellulose nanocrystal (GO@CNC) nanoparticles (NPs) were synthesized in this study using a room temperature-based simple modified hummers process. The morphological structures, as well as chemical characteristics of these materials, were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and other techniques. The results show that the as-prepared nanoparticles are made up of crystallite grains with an average size of around 7.82, 14.69, 10.77, 7.82, and 12.51 nm for GO, CNC, GO1@CNC1, GO2@CNC3, and GO3@CNC3 respectively, and OH & COOH functionalities on the NPs' surfaces. GO@CNC NPs exhibit significantly better sensing characteristics towards acetone when compared to virgin GO nanoplatelets; specifically, the optimal sensor based on GO3@CNC3 NPs showed the highest response (60.88 at 5 ppm), which was higher than that of the virgin GO sensor at 200 °C operating temperature and including those reported. Furthermore, the sensors have a high sensitivity towards acetone in sub-ppm concentrations as well as a detection limit of 5 ppm, making it a viable candidate for diabetes breath testing.


Subject(s)
Graphite , Nanoparticles , Cellulose/chemistry , Acetone , Nanoparticles/chemistry , Graphite/chemistry , Metals
6.
ACS Omega ; 8(9): 8134-8158, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36910979

ABSTRACT

Electromagnetic interference (EMI) shielding effectiveness (SE) systems have received immense attention from researchers owing to the rapid development in electronics and telecommunications, which is an alarming matter in our modern society. This radiation can damage the performance of EM devices and may harmfully affect animal/human health. The harmonious utilization of magnetic alloys and conducting but nonmagnetic materials (such as carbon/graphene) is a practical approach toward EMI SE. This review is not exhaustive, although it is comprehensive and aimed at all materials for EMI SE especially graphene-based polymeric composites. It encompasses multifunctional and functional structural EMI shields. These materials comprise polymers, carbons, ceramics, metals, cement composites/nanocomposites, and hybrids. The accessibility of abundant categories of carbon-based materials in their microscale, nanoscale, and quantum forms as EMI shields as polymer-carbon, cement-carbon, ceramic-carbon, metal-carbon, and their hybrids, makes them receive much attention, as a result of their unique amalgamation of electrical, magnetic, dielectric, thermal, and/or mechanical properties. Herewith, we have discussed the principles of EMI shields along with their design and state of the art basis and material architecture along with the drawbacks in research on EMI shields.

7.
ACS Omega ; 7(38): 33699-33718, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36188266

ABSTRACT

As a result of advancements in electronics/telecommunications, electromagnetic interference (EMI) pollution has gotten worse. Hence, fabrication/investigation of EMI shields having outstanding EMI shielding performance is necessary. Electrospinning (ES) has recently been established in several niches where 1D nanofibers (NFs) fabricated by ES can provide the shielding of EM waves, owing to their exceptional benefits. This review presents the basic correlations of ES technology and EMI shielding. Diverse graphene (GP)-based fibrous materials directly spun via ES as EMI shields are discussed. Electrospun EMI shields as composites through diverse post-treatments are reviewed, and then different factors influencing their EMI shielding characteristics are critically summarized. Finally, deductions and forthcoming outlooks are given. This review provides up to date knowledge on the advancement of the application of graphene-based electrospun fibers/composite materials as EMI shields and the outlook for high-performance electrospun fibers/composite-based EMI shielding materials.

8.
Int J Biol Macromol ; 218: 556-567, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35905757

ABSTRACT

Over the past few years, there is a drive toward the fabrication and application of bio-based non-cytotoxic drug carriers. Cellulose nanocrystals (CNCs) have gotten immense research attention as a promising bioderived material in the biomedical field due to its remarkable properties. The delivery of analgesic and anti-inflammatory drug, ketorolac tromethamine (KT) by transdermal route is stipulated herewith to fabricate suitable transdermal therapeutic systems. We have synthesized CNCs from jute fibers and aim to develop a non-cytotoxic polymer-based bionanocomposites (BNCs) transdermal patch, formulated with methylcellulose (MC), chitosan (CH), along with exploration of CNCs for sustained delivery of KT, where CNCs act as nanofiller and elegant nanocarrier. CNCs reinforced MCCH blends were prepared via the solvent evaporation technique. The chemical structure, morphology, and thermal stability of the prepared bionanocomposites formulations were studied by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), TGA, DSC, DMA, and SEM. The In vitro drug release studies were executed using Franz diffusion cells. The BNC patches showed in-vitro cytocompatibility and the drug release study revealed that BNC containing 1 wt% CNCs presented the best-sustained drug release profile. The bioderived CNCs appear to enhance the BNCs drug's bioavailability, which could have a broad prospect for TDD applications.


Subject(s)
Chitosan , Nanoparticles , Cellulose/chemistry , Ketorolac Tromethamine , Methylcellulose , Nanoparticles/chemistry , Transdermal Patch
9.
Polymers (Basel) ; 14(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35215617

ABSTRACT

The improvement in current materials science has prompted a developing need to capture the peculiarities that determine the properties of materials and how they are processed on an atomistic level. Quantum mechanics laws control the interface among atoms and electrons; thus, exact and proficient techniques for fixing the major quantum-mechanical conditions for complex many-particle, many-electron frameworks should be created. Density functional theory (DFT) marks an unequivocal advance in these endeavours. DFT has had a rapid influence on quintessential and industrial research during the last decade. The DFT system describes periodic structural systems of 2D or 3D electronics with the utilization of Bloch's theorem in the direction of Kohn-Sham wavefunctions for the significant facilitation of these schemes. This article introduces and discusses the infinite systems modelling approach required for graphene-based polymer composites or their hybrids. Aiming to understand electronic structure computations as per physics, the impressions of band structures and atomic structure envisioned along with orbital predicted density states are beneficial. Convergence facets coupled with the basic functions number and the k-points number are necessary to explain for every physicochemical characteristic in these materials. Proper utilization of DFT in graphene-based polymer composites for materials in EMI SE presents the potential of taking this niche to unprecedented heights within the next decades. The application of this system in graphene-based composites by researchers, along with their performance, is reviewed.

10.
Carbohydr Polym ; 246: 116661, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32747293

ABSTRACT

This is the first report on utilization of modified Hummers' method for in-situ synthesis of novel graphene oxide-cellulose nanocrystals nanocomposite in a single reaction vessel. Cellulose used for nanocomposite preparation was extracted from waste jute. The synthesized nanocomposite was characterized with FTIR, XRD, SEM, EDX, DLS, and Zeta potential analyzer. It was applied as an adsorbent for the removal of toxic dye methylene blue from aqueous solutions. Around 98 % MB removal was achieved in 135 min. Under optimum experimental conditions recommended by response surface methodology, adsorption capacity of the nanocomposite was found to be 334.19 mg g-1 while the maximum adsorption capacity as determined by Langmuir isotherm 751.88 mg g-1. Further analysis revealed that the process was guided by both Langmuir and Freundlich isotherm and followed pseudo-second-order kinetics. This cost-effective synthesis route and efficient adsorption capacity of the nanocomposite indicate its immense potential for large-scale application in wastewater treatment.

11.
Int J Biol Macromol ; 140: 441-453, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31437512

ABSTRACT

There has been extensive utilization of poloxamer 407 (PM) for the delivery of various ophthalmic drugs aimed at efficient ophthalmic drug delivery approach for longer precorneal residence time along with acceptable bioavailability of drugs. We have studied the effect of nanocellulose grafted collagen (CGC) on the performance of in situ gels based on PM for the controlled in vitro release of Ketorolac Tromethamine (KT). CGC has shown great influence evident by the reduction in PM critical gelation concentration, increased gel strength, and prolonged the release of loaded drugs compared with the virgin PM gel. The engineered nanocomposite formulations established an anomalous diffusion mechanism along with a Fickian diffusion controlled drug release for 1.5 & 1.75 w/v% CGC reinforced PM. Hence, the synthesized in situ nanocomposites are potential candidates for ophthalmic drug delivery system.


Subject(s)
Cellulose/chemistry , Drug Delivery Systems , Nanofibers/chemistry , Ophthalmic Solutions/chemistry , Cell Line , Cellulose/chemical synthesis , Cellulose/pharmacology , Collagen/chemical synthesis , Collagen/chemistry , Collagen/therapeutic use , Drug Compounding , Drug Liberation , Humans , Ketorolac Tromethamine/chemical synthesis , Ketorolac Tromethamine/chemistry , Nanofibers/therapeutic use , Ophthalmic Solutions/chemical synthesis , Ophthalmic Solutions/therapeutic use , Poloxamer/chemistry , Rheology
12.
Int J Biol Macromol ; 124: 235-245, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30481535

ABSTRACT

Triblock poloxamer copolymer (PM) has been extensively utilized to deliver various ophthalmic pharmaceutical compounds. The aim of efficient ophthalmic drug delivery strategy is to attain the longer precorneal resident time and good bioavailability of drugs. In this pursuit, the influence of cellulose nanocrystals (CNC) on the in situ gelation behavior of PM and in vitro release of pilocarpine hydrochloride from the nanocomposites formulations was studied. The critical concentration of gelation of PM being 18% (wt/v) was dropped to 16.6% (wt/v) by the addition of a very low percentage of CNC. The reinforcing nature of CNC via H-bonding in the in situ nanocomposite gel also led to an increase in gel strength along with the sustained release of loaded drugs when compared with the pure PM gel. All formulations revealed that the drug release mechanism is controlled by the Fickian diffusion. Thus, the CNC has a significant effect on the gelation behavior, gel strength, and drug release kinetics of PM-CNC formulations.


Subject(s)
Cellulose/chemistry , Eye Diseases/drug therapy , Nanoparticles/chemistry , Pilocarpine/chemistry , Administration, Ophthalmic , Cellulose/therapeutic use , Drug Compounding , Drug Delivery Systems , Humans , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Nanoparticles/therapeutic use , Pilocarpine/therapeutic use , Poloxamer/chemistry , Poloxamer/therapeutic use , Polymers/chemistry , Polymers/therapeutic use
13.
Carbohydr Polym ; 188: 168-180, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29525153

ABSTRACT

Non-toxic nanocomposites based bio-films obtained from methylcellulose (MC) can reduce environmental problems associated with synthetic polymers. A new facile route for the isolation of cellulose nano-crystals (CNC) from jute waste is successfully utilized here. The fabrication of CNC reinforced MC nanocomposites by film casting technique and the studies of the effect of CNC on the properties of the MC based nanocomposites have been reported. The synthesized nanocomposites have shown improved UV resistance, mechanical, barrier, and thermal properties. FTIR results established the physicochemical compatibility between the drug, MC and CNC in nanocomposites. In vitro permeation studies performed by using Franz diffusion cell revealed diffusion mediated sustained drug release from the devices due to the presence of interaction between MC and CNC through H-bonding, electrostatic interaction between the hydrophilic polymer/CNC chains with the drug and the formation of tortuous path. The nanocomposites can be used for edible packaging and transdermal drug delivery.


Subject(s)
Cellulose/chemistry , Ketorolac Tromethamine/chemistry , Methylcellulose/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared
14.
Int J Biol Macromol ; 109: 1246-1252, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29169944

ABSTRACT

There is a need for reuse of waste cotton lint (WCL) from the blow room of yarn spinning mills. The drive to use this material for the synthesis of nanocellulose is difficult because of the several purification/pretreatment processes. Here, we developed a combined single bath purification process of WCL and utilized it for the synthesis of nano-crystalline cellulose crystals (NCs) which are valuable nanomaterials with novel properties along with acid recovery for reuse. The micrograph of the synthesized NCs confirmed a network of nano-sized crystalline cellulose crystals having nano ranged diameter of NCs isolated by two processes. The FTIR result established the removal of impurities and hemicelluloses from WCL. The crystallinity index of WCL (∼89.97%) is improved to ∼96% and ∼94% for sulphuric acid and nitric acid synthesized NCs (NC1 and NC2). The crystallite size of WCL, CTWCL, NC1, and NC2 was calculated using XRD and found to be 101.56, 103.54, 98.81, and 95.6nm respectively. The hydrodynamic size (Z-average) (dnm), polydispersity index and zeta potential of NCs was also studied using dynamic light scattering (DLS). The thermal stability of the NC1 is better than that of NC2. These NCs can be used as reinforcing filler/barrier material.


Subject(s)
Cellulose/chemistry , Cotton Fiber , Crystallins/chemistry , Nanostructures/chemistry , Cellulose/chemical synthesis , Crystallins/chemical synthesis , Crystallization , Dynamic Light Scattering , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL