Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Acta Pharm Sin B ; 14(1): 350-364, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38261817

ABSTRACT

Recent clinical studies have shown that mutation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene in cancer cells may be associated with immunosuppressive tumor microenvironment (TME) and poor response to immune checkpoint blockade (ICB) therapy. Therefore, efficiently restoring PTEN gene expression in cancer cells is critical to improving the responding rate to ICB therapy. Here, we screened an adeno-associated virus (AAV) capsid for efficient PTEN gene delivery into B16F10 tumor cells. We demonstrated that intratumorally injected AAV6-PTEN successfully restored the tumor cell PTEN gene expression and effectively inhibited tumor progression by inducing tumor cell immunogenic cell death (ICD) and increasing immune cell infiltration. Moreover, we developed an anti-PD-1 loaded phospholipid-based phase separation gel (PPSG), which formed an in situ depot and sustainably release anti-PD-1 drugs within 42 days in vivo. In order to effectively inhibit the recurrence of melanoma, we further applied a triple therapy based on AAV6-PTEN, PPSG@anti-PD-1 and CpG, and showed that this triple therapy strategy enhanced the synergistic antitumor immune effect and also induced robust immune memory, which completely rejected tumor recurrence. We anticipate that this triple therapy could be used as a new tumor combination therapy with stronger immune activation capacity and tumor inhibition efficacy.

2.
Small ; 20(16): e2307366, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38039446

ABSTRACT

Restoring immune tolerance is the ultimate goal for rheumatoid arthritis (RA) treatment. The most reported oral or intravenous injection routes for the immunization of autoantigens cause gastrointestinal side effects, low patient compliance, and unsatisfied immune tolerance induction. Herein, the use of a transdermal microneedle patch is for the first time investigated to codeliver CII peptide autoantigen and rapamycin for reversing immune disorders of RA. The immunized microneedles efficiently recruit antigen-presenting cells particularly Langerhans cells, and induce tolerogenic dendritic cells at the administration skin site. The tolerogenic dendritic cells further homing to lymph nodes to activate systemic Treg cell differentiation, which upregulates the expression of anti-inflammatory mediators while inhibiting the polarization of Th1/2 and Th17 T cell phenotypes and the expression of inflammatory profiles. As a result, the optimized microneedles nearly completely eliminate RA symptoms and inflammatory infiltrations. Furthermore, it is demonstrated that a low dose of rapamycin is crucial for the successful induction of immune tolerance. The results indicate that a rationally designed microneedle patch is a promising strategy for immune balance restoration with increased immune tolerance induction efficiency and patient compliance.


Subject(s)
Arthritis, Rheumatoid , Langerhans Cells , Humans , Th17 Cells , Arthritis, Rheumatoid/therapy , Immune Tolerance , Sirolimus/pharmacology
3.
Acta Pharm Sin B ; 13(5): 2219-2233, 2023 May.
Article in English | MEDLINE | ID: mdl-35846427

ABSTRACT

Due to the insufficient long-term protection and significant efficacy reduction to new variants of current COVID-19 vaccines, the epidemic prevention and control are still challenging. Here, we employ a capsid and antigen structure engineering (CASE) strategy to manufacture an adeno-associated viral serotype 6-based vaccine (S663V-RBD), which expresses trimeric receptor binding domain (RBD) of spike protein fused with a biological adjuvant RS09. Impressively, the engineered S663V-RBD could rapidly induce a satisfactory RBD-specific IgG titer within 2 weeks and maintain the titer for more than 4 months. Compared to the licensed BBIBP-CorV (Sinopharm, China), a single-dose S663V-RBD induced more endurable and robust immune responses in mice and elicited superior neutralizing antibodies against three typical SARS-CoV-2 pseudoviruses including wild type, C.37 (Lambda) and B.1.617.2 (Delta). More interestingly, the intramuscular injection of S663V-RBD could overcome pre-existing immunity against the capsid. Given its effectiveness, the CASE-based S663V-RBD may provide a new solution for the current and next pandemic.

4.
Small ; 18(1): e2105530, 2022 01.
Article in English | MEDLINE | ID: mdl-34825482

ABSTRACT

Parenteral vaccines typically can prime systemic humoral immune response, but with limited effects on cellular and mucosal immunity. Here, a subcutis-to-intestine cascade for navigating nanovaccines to address this limitation is proposed. This five-step cascade includes lymph nodes targeting, uptaken by dendritic cells (DCs), cross-presentation of antigens, increasing CCR9 expression on DCs, and driving CD103+ DCs to mesenteric lymph nodes, in short, the LUCID cascade. Specifically, mesoporous silica nanoparticles are encapsulated with antigen and adjuvant toll-like receptor 9 agonist cytosine-phosphate-guanine oligodeoxynucleotides, and further coated by a lipid bilayer containing all-trans retinoic acid. The fabricated nanovaccines efficiently process the LUCID cascade to dramatically augment cellular and mucosal immune responses. Importantly, after being vaccinated with Salmonella enterica serovar Typhimurium antigen-loaded nanovaccine, the mice generate protective immunity against challenge of S. Typhimurium. These findings reveal the efficacy of nanovaccines mediated subcutis-to-intestine cascade in simultaneously activating cellular and mucosal immune responses against mucosal infections.


Subject(s)
Nanoparticles , Vaccines , Animals , Antigens , Dendritic Cells , Intestines , Mice , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL