Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37877791

ABSTRACT

The nuclear resonant scattering (NRS) experiment requires photon-counting detectors with high time resolution, short dead time, large dynamic range, low noise, and large detection area. An 8-channel avalanche photodiode (APD) array detector system with high integrity, flexibility, and reliability has been developed to adapt to the demands of NRS experiments. The detector system mainly consists of four key parts: (i) an array-APD sensor, (ii) 8-channel integrated fast preamplifiers, (iii) the time-to-digital converter readout electronics, and (iv) a data acquisition system and EPICS support software. Remarkably, the system exhibits a time resolution of better than 500 ps and has a sufficiently low noise level, allowing for the lowest detection energy threshold of 4 keV. The performance of the new array-APD system as well as its real application in nuclear forward scattering (NFS) and nuclear resonant inelastic x-ray scattering (NRIXS) experiments was tested in two synchrotron facilities. With the new system, the NFS signal very close to the prompt electronic scattering signal can be extracted. Thanks to the customized EPICS-areaDetector-based control software, NRIXS spectra can be readily measured with time and energy information of the NRIXS signal stored in the raw data, which is promising for developing NRIXS data analysis in the time domain. The array-APD detector can be deployed for nuclear resonant scattering experiments at various synchrotron radiation facilities.

2.
Rev Sci Instrum ; 93(12): 123102, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36586897

ABSTRACT

Owing to the parasitic vibration effect of the cooling medium and pipes of X-ray optics, the vibration decoupling cooling method based on eutectic gallium-indium (EGaIn) alloy has become very crucial for fourth generation synchrotron radiation advanced light sources. However, there is an issue that the corrosion of the EGaIn alloy to the heat sink metal [e.g., copper (Cu) plate] results in the solidification and the failure of eliminating the parasitic vibration effect. To deal with the problem, a novel anti-corrosion coating based on tungsten (W) is presented in this paper. It possesses better corrosion resistance performance compared with the traditional coating of nickel (Ni). The experimental investigation was carried out, in which the EGaIn alloy was exposed to several typical metal materials in conditions of various time durations and various temperatures, which were considered as controls. Furthermore, the corrosion effects are analyzed and evaluated in two aspects of micromorphology and the chemical composition by using an optical microscope and a scanning electron microscope as well as x-ray diffraction. The results show that non obvious corrosion occurred for W, 0.33 mm and 48 µm thick transition micro-area, respectively, for Cu and Ni. In addition, new substances CuGa2 and Ni3Ga7 occurred, respectively, for Cu and Ni for 36 hours at 250 °C. The EGaIn alloy will freeze after corroding 18 µm substrate for Ni or 30 µm for Cu. Furthermore, the W coating that was prepared by magnetron sputtering has been implemented for feasibility validation.

SELECTION OF CITATIONS
SEARCH DETAIL