Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Language
Publication year range
1.
Gene ; 917: 148443, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38582263

ABSTRACT

Acute promyelocytic leukemia (APL) is a type of acute myeloid leukemia (AML) with a high mortality rate, and the production of PML-RARα fusion protein is the cause of its pathogenesis. Our group has synthesized a novel compound, 4-amino-2-trifluoromethyl-phenyl retinate (ATPR), by structural modification of All-trans retinoic acid (ATRA), which has strong cell differentiation-inducing effects and inhibits the expression of PML-RARα. In this study, acute promyelocytic leukemia NB4 cells before and after ATPR induction were analyzed by whole transcriptome microarray, and the expression of lncRNA CONCR was found to be significantly downregulated. The role of CONCR in ATPR-induced cell differentiation and cycle arrest was explored through overexpression and silencing of CONCR. And then the database was used to predict that CONCR may bind to DEAD/H-Box Helicase 11 (DDX11) protein to further explore the role of CONCR binding to DDX11. The results showed that ATPR could reduce the expression of CONCR, and overexpression of CONCR could reverse the ATPR-induced cell differentiation and cycle blocking effect, and conversely silencing of CONCR could promote this effect. RNA immunoprecipitation (RIP) experiments showed that CONCR could bind to DDX11, the protein expression levels of DDX11 and PML-RARα were elevated after overexpression of CONCR. These results suggest that ATPR can regulate the expression of DDX11 through CONCR to affect the expression of PML-RARα fusion protein, which in turn induces the differentiation and maturation of APL cells.


Subject(s)
Cell Cycle Checkpoints , Cell Differentiation , DEAD-box RNA Helicases , Leukemia, Promyelocytic, Acute , Oncogene Proteins, Fusion , RNA, Long Noncoding , Signal Transduction , Humans , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Cell Line, Tumor , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Tretinoin/pharmacology , Gene Expression Regulation, Leukemic
2.
Biochem Pharmacol ; 210: 115458, 2023 04.
Article in English | MEDLINE | ID: mdl-36803956

ABSTRACT

Oncogene FLT3 internal tandem duplication (FLT3-ITD) mutation accounts for 30 % of acute myeloid leukaemia (AML) cases and induces transformation. Previously, we found that E2F transcription factor 1 (E2F1) was involved in AML cell differentiation. Here, we reported that E2F1 expression was aberrantly upregulated in AML patients, especially in AML patients carrying FLT3-ITD. E2F1 knockdown inhibited cell proliferation and increased cell sensitivity to chemotherapy in cultured FLT3-ITD-positive AML cells. E2F1-depleted FLT3-ITD+ AML cells lost their malignancy as shown by the reduced leukaemia burden and prolonged survival in NOD-PrkdcscidIl2rgem1/Smoc mice receiving xenografts. Additionally, FLT3-ITD-driven transformation of human CD34+ hematopoietic stem and progenitor cells was counteracted by E2F1 knockdown. Mechanistically, FLT3-ITD enhanced the expression and nuclear accumulation of E2F1 in AML cells. Further study using chromatin immunoprecipitation-sequencing and metabolomics analyses revealed that ectopic FLT3-ITD promoted the recruitment of E2F1 on genes encoding key enzymatic regulators of purine metabolism and thus supported AML cell proliferation. Together, this study demonstrates that E2F1-activated purine metabolism is a critical downstream process of FLT3-ITD in AML and a potential target for FLT3-ITD+ AML patients.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Mice , Animals , Mice, Inbred NOD , Leukemia, Myeloid, Acute/metabolism , Cells, Cultured , Antigens, CD34 , Purines , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Mutation , E2F1 Transcription Factor/genetics
3.
J Transl Med ; 20(1): 561, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463203

ABSTRACT

BACKGROUND: Destruction of articular cartilage and bone is the main cause of joint dysfunction in rheumatoid arthritis (RA). Acid-sensing ion channel 1a (ASIC1a) is a key molecule that mediates the destruction of RA articular cartilage. Estrogen has been proven to have a protective effect against articular cartilage damage, however, the underlying mechanisms remain unclear. METHODS: We treated rat articular chondrocytes with an acidic environment, analyzed the expression levels of mitochondrial stress protein HSP10, ClpP, LONP1 by q-PCR and immunofluorescence staining. Transmission electron microscopy was used to analyze the mitochondrial morphological changes. Laser confocal microscopy was used to analyze the Ca2+, mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) level. Moreover, ASIC1a specific inhibitor Psalmotoxin 1 (Pctx-1) and Ethylene Glycol Tetraacetic Acid (EGTA) were used to observe whether acid stimulation damage mitochondrial function through Ca2+ influx mediated by ASIC1a and whether pretreatment with estrogen could counteract these phenomena. Furthermore, the ovariectomized (OVX) adjuvant arthritis (AA) rat model was treated with estrogen to explore the effect of estrogen on disease progression. RESULTS: Our results indicated that HSP10, ClpP, LONP1 protein and mRNA expression and mitochondrial ROS level were elevated in acid-stimulated chondrocytes. Moreover, acid stimulation decreased mitochondrial membrane potential and damaged mitochondrial structure of chondrocytes. Furthermore, ASIC1a specific inhibitor PcTx-1 and EGTA inhibited acid-induced mitochondrial abnormalities. In addition, estrogen could protect acid-stimulated induced mitochondrial stress by regulating the activity of ASIC1a in rat chondrocytes and protects cartilage damage in OVX AA rat. CONCLUSIONS: Extracellular acidification induces mitochondrial stress by activating ASIC1a, leading to the damage of rat articular chondrocytes. Estrogen antagonizes acidosis-induced joint damage by inhibiting ASIC1a activity. Our study provides new insights into the protective effect and mechanism of action of estrogen in RA.


Subject(s)
Acid Sensing Ion Channels , Arthritis, Rheumatoid , Chondrocytes , Estrogens , Mitochondria , Animals , Rats , Acid Sensing Ion Channels/genetics , Acid Sensing Ion Channels/metabolism , Arthritis, Experimental , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Chondrocytes/drug effects , Chondrocytes/metabolism , Egtazic Acid/metabolism , Egtazic Acid/toxicity , Estrogens/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Reactive Oxygen Species , Cartilage, Articular/drug effects , Cartilage, Articular/pathology
4.
Pharmaceutics ; 14(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365147

ABSTRACT

The present study aimed to better understand the possibility of utilizing all-trans retinoic acids (ATRA) in acute myeloid leukemia (AML). We found that ATRA significantly suppressed global translation and protein synthesis in AML cells. The efficacy of ATRA in treating AML required its translational regulatory functions, as shown by the fact that the decrease in the universal eukaryotic initiation factor 4E (eIF4E) was essential to maintain the induction of cell growth arrest and differentiation by ATRA. By establishing a specific translational landscape, we suggested that transcripts with simple 5'UTR gained a translational advantage in AML cells during ATRA stress. Based on that, the genes translationally regulated by ATRA were mainly enriched in phosphatidylinositol-3-kinase/Akt (PI3K/AKT) signaling; we subsequently revealed that PI3K/AKT activation was required for ATRA to effectively induce AML cell differentiation. However, PI3K/AKT has been reported to promote the stemness of AML cells. As such, we further suggested that sequential treatment including ATRA and PI3K/AKT inhibitor induced robust apoptosis, extremely inhibited the clonality of AML cells, and suppressed the FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD)-driven transformation of CD34+ hematopoietic stem/progenitor cells. Future clinical studies are warranted to further support the clinical application of the sequential strategy for the effective treatment of AML.

5.
J Cell Mol Med ; 26(4): 1128-1143, 2022 02.
Article in English | MEDLINE | ID: mdl-35001521

ABSTRACT

Acute myeloid leukaemia (AML) is a biologically heterogeneous disease with an overall poor prognosis; thus, novel therapeutic approaches are needed. Our previous studies showed that 4-amino-2-trifluoromethyl-phenyl retinate (ATPR), a new derivative of all-trans retinoic acid (ATRA), could induce AML cell differentiation and cycle arrest. The current study aimed to determine the potential pharmacological mechanisms of ATPR therapies against AML. Our findings showed that E2A was overexpressed in AML specimens and cell lines, and mediate AML development by inactivating the P53 pathway. The findings indicated that E2A expression and activity decreased with ATPR treatment. Furthermore, we determined that E2A inhibition could enhance the effect of ATPR-induced AML cell differentiation and cycle arrest, whereas E2A overexpression could reverse this effect, suggesting that the E2A gene plays a crucial role in AML. We identified P53 and c-Myc were downstream pathways and targets for silencing E2A cells using RNA sequencing, which are involved in the progression of AML. Taken together, these results confirmed that ATPR inhibited the expression of E2A/c-Myc, which led to the activation of the P53 pathway, and induced cell differentiation and cycle arrest in AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Antineoplastic Agents/pharmacology , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Tretinoin/pharmacology
6.
Cell Prolif ; 55(3): e13185, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35092119

ABSTRACT

OBJECTIVES: This study aimed to investigate the biological impacts and possible mechanisms of a novel lncRNA, LncSIK1, in AML progression and retinoic acid-regulated AML cell development. MATERIALS AND METHODS: The expression pattern of LncSIK1 was evaluated by qPCR and fluorescence in situ hybridization. CCK-8 assay, immunofluorescence, Wright-Giemsa staining, flow cytometry and Western blotting were performed to assess cell proliferation and differentiation. Bioluminescence imaging and H&E staining were used to detect AML progression in vivo. RNA or chromatin immunoprecipitation assays were conducted to measure the interaction of E2F1 and LncSIK1 or the LC3 and DRAM promoters. Autophagy was measured by transmission electron microscopy and Western blotting. RESULTS: LncSIK1 was silenced in bone marrow mononuclear cells from AML patients compared with those from healthy donors. LncSIK1 strengthened the effect of retinoic acid in inducing cell differentiation and inhibiting cell proliferation in AML cells. Moreover, the silencing of LncSIK1 was critical to maintaining AML leukaemogenesis, as LncSIK1 enhancement retarded AML progression in vivo. Mechanistically, in NB4 cells, LncSIK1 recruited the E2F1 protein to the promoters of LC3 and DRAM and induced autophagy-dependent degradation of the oncoprotein PML-RARa. However, LncSIK1 blocked E2F1 expression and the E2F1-mediated transcription of LC3 and DRAM, thereby relieving aggressive autophagy in Molm13 cells. CONCLUSIONS: Taken together, these data indicated that LncSIK1 was an important regulator of AML development through regulating the E2F1/autophagy signalling pathway.


Subject(s)
Autophagy/drug effects , E2F1 Transcription Factor/drug effects , RNA, Long Noncoding/genetics , Tretinoin/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , E2F1 Transcription Factor/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL