Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Cell Rep ; 36(10): 109666, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34496254

ABSTRACT

Although axonal damage induces rapid changes in gene expression in primary sensory neurons, it remains unclear how this process is initiated. The transcription factor ATF3, one of the earliest genes responding to nerve injury, regulates expression of downstream genes that enable axon regeneration. By exploiting ATF3 reporter systems, we identify topoisomerase inhibitors as ATF3 inducers, including camptothecin. Camptothecin increases ATF3 expression and promotes neurite outgrowth in sensory neurons in vitro and enhances axonal regeneration after sciatic nerve crush in vivo. Given the action of topoisomerases in producing DNA breaks, we determine that they do occur immediately after nerve damage at the ATF3 gene locus in injured sensory neurons and are further increased after camptothecin exposure. Formation of DNA breaks in injured sensory neurons and enhancement of it pharmacologically may contribute to the initiation of those transcriptional changes required for peripheral nerve regeneration.


Subject(s)
Activating Transcription Factor 3/metabolism , Axons/metabolism , DNA Breaks/drug effects , DNA Topoisomerases, Type I/metabolism , Peripheral Nerve Injuries/metabolism , Sensory Receptor Cells/metabolism , Animals , DNA Topoisomerases, Type I/drug effects , Gene Expression/physiology , Mice, Inbred C57BL , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Neuronal Outgrowth/physiology , Sciatic Nerve/metabolism
2.
Chem Biol ; 19(8): 972-82, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22921064

ABSTRACT

The Hedgehog signaling pathway is linked to a variety of diseases, notably a range of cancers. The first generation of drug screens identified Smoothened (Smo), a membrane protein essential for signaling, as an attractive drug target. Smo localizes to the primary cilium upon pathway activation, and this transition is critical for the response to Hedgehog ligands. In a high content screen directly monitoring Smo distribution in Hedgehog-responsive cells, we identified different glucocorticoids as specific modulators of Smo ciliary accumulation. One class promoted Smo accumulation, conferring cellular hypersensitivity to Hedgehog stimulation. In contrast, a second class inhibited Smo ciliary localization and signaling activity by both wild-type Smo, and mutant forms of Smo, SmoM2, and SmoD473H, that are refractory to previously identified Smo antagonists. These findings point to the potential for developing glucocorticoid-based pharmacological modulation of Smo signaling to treat mutated drug-resistant forms of Smo, an emerging problem in long-term cancer therapy. They also raise a concern about potential crosstalk of glucocorticoid drugs in the Hedgehog pathway, if therapeutic administration exceeds levels associated with on-target transcriptional mechanisms of glucocorticoid action.


Subject(s)
Glucocorticoids/pharmacology , Hedgehog Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Anilides/pharmacology , Animals , COS Cells , Cell Proliferation/drug effects , Cells, Cultured , Chlorocebus aethiops , Drug Interactions , Fluocinolone Acetonide/pharmacology , Glucocorticoids/chemistry , HEK293 Cells , Humans , Mice , NIH 3T3 Cells , Patched Receptors , Pyridines/pharmacology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Smoothened Receptor
SELECTION OF CITATIONS
SEARCH DETAIL