Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters








Database
Language
Publication year range
1.
NPJ Clim Atmos Sci ; 7(1): 215, 2024.
Article in English | MEDLINE | ID: mdl-39281887

ABSTRACT

During summer, ammonia emissions in Southeast Asia influence air pollution and cloud formation. Convective transport by the South Asian monsoon carries these pollutant air masses into the upper troposphere and lower stratosphere (UTLS), where they accumulate under anticyclonic flow conditions. This air mass accumulation is thought to contribute to particle formation and the development of the Asian Tropopause Aerosol Layer (ATAL). Despite the known influence of ammonia and particulate ammonium on air pollution, a comprehensive understanding of the ATAL is lacking. In this modelling study, the influence of ammonia on particle formation is assessed with emphasis on the ATAL. We use the EMAC chemistry-climate model, incorporating new particle formation parameterisations derived from experiments at the CERN CLOUD chamber. Our diurnal cycle analysis confirms that new particle formation mainly occurs during daylight, with a 10-fold enhancement in rate. This increase is prominent in the South Asian monsoon UTLS, where deep convection introduces high ammonia levels from the boundary layer, compared to a baseline scenario without ammonia. Our model simulations reveal that this ammonia-driven particle formation and growth contributes to an increase of up to 80% in cloud condensation nuclei (CCN) concentrations at cloud-forming heights in the South Asian monsoon region. We find that ammonia profoundly influences the aerosol mass and composition in the ATAL through particle growth, as indicated by an order of magnitude increase in nitrate levels linked to ammonia emissions. However, the effect of ammonia-driven new particle formation on aerosol mass in the ATAL is relatively small. Ammonia emissions enhance the regional aerosol optical depth (AOD) for shortwave solar radiation by up to 70%. We conclude that ammonia has a pronounced effect on the ATAL development, composition, the regional AOD, and CCN concentrations.

2.
Sci Total Environ ; 948: 174804, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39019282

ABSTRACT

Black carbon (BC) is emitted into the atmosphere during combustion processes, often in conjunction with emissions such as nitrogen oxides (NOx) and ozone (O3), which are also by-products of combustion. In highly polluted regions, combustion processes are one of the main sources of aerosols and particulate matter (PM) concentrations, which affect the radiative budget. Despite the high relevance of this air pollution metric, BC monitoring is quite expensive in terms of instrumentation and of maintenance and servicing. With the aim to provide tools to estimate BC while minimising instrumentation costs, we use machine learning approaches to estimate BC from air pollution and meteorological parameters (NOx, O3, PM2.5, relative humidity (RH), and solar radiation (SR)) from currently available networks. We assess the effectiveness of various machine learning models, such as random forest (RF), support vector regression (SVR), and multilayer perceptron (MLP) artificial neural network, for predicting black carbon (BC) mass concentrations in areas with high BC levels such as Northern Indian cities (Delhi and Agra), across different seasons. The results demonstrate comparable effectiveness among the models, with the multilayer perceptron (MLP) showing the most promising results. In addition, the comparability between estimated and monitored BC concentrations was high. In Delhi, the MLP shows high correlations between measured and modelled concentrations during winter (R2: 0.85) and post-monsoon (R2: 0.83) seasons, and notable metrics in the pre-monsoon (R2: 0.72). The results from Agra are consistent with those from Delhi, highlighting the consistency of the neural network's performance. These results highlight the usefulness of machine learning, particularly MLP, as a valuable tool for predicting BC concentrations. This approach provides critical new opportunities for urban air quality management and mitigation strategies and may be especially valuable for megacities in medium- and low-income regions.

3.
Nat Commun ; 14(1): 6139, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37783680

ABSTRACT

The climate effects of atmospheric aerosol particles serving as cloud condensation nuclei (CCN) depend on chemical composition and hygroscopicity, which are highly variable on spatial and temporal scales. Here we present global CCN measurements, covering diverse environments from pristine to highly polluted conditions. We show that the effective aerosol hygroscopicity, κ, can be derived accurately from the fine aerosol mass fractions of organic particulate matter (ϵorg) and inorganic ions (ϵinorg) through a linear combination, κ = ϵorg ⋅ κorg + ϵinorg ⋅ κinorg. In spite of the chemical complexity of organic matter, its hygroscopicity is well captured and represented by a global average value of κorg = 0.12 ± 0.02 with κinorg = 0.63 ± 0.01 as the corresponding value for inorganic ions. By showing that the sensitivity of global climate forcing to changes in κorg and κinorg is small, we constrain a critically important aspect of global climate modelling.

4.
Part Fibre Toxicol ; 19(1): 61, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36109745

ABSTRACT

BACKGROUND: Exposure to air pollutants is one of the major environmental health risks faced by populations globally. Information about inhaled particle deposition dose is crucial in establishing the dose-response function for assessing health-related effects due to exposure to air pollution. OBJECTIVE: This study aims to quantify the respiratory tract deposition (RTD) of equivalent black carbon (BC) particles in healthy young adults during a real-world commuting scenario, analyze factors affecting RTD of BC, and provide key parameters for the assessment of RTD. METHODS: A novel in situ method was applied to experimentally determine the RTD of BC particles among subjects in the highly polluted megacity of Metro Manila, Philippines. Exposure measurements were made for 40 volunteers during public transport and walking. RESULTS: The observed BC exposure concentration was up to 17-times higher than in developed regions. The deposition dose rate (DDR) of BC was up to 3 times higher during commute inside a public transport compared to walking (11.6 versus 4.4 µg hr-1, respectively). This is twice higher than reported in similar studies. The average BC mass deposition fraction (DF) was found to be 43 ± 16%, which can in large be described by individual factors and does not depend on gender. CONCLUSIONS: Commuting by open-sided public transport, commonly used in developing regions, poses a significant health risk due to acquiring extremely high doses of carcinogenic traffic-related pollutants. There is an urgent need to drastically update air pollution mitigation strategies for reduction of dangerously high emissions of BC in urban setting in developing regions. The presented mobile measurement set-up to determine respiratory tract deposition dose is a practical and cost-effective tool that can be used to investigate respiratory deposition in challenging environments.


Subject(s)
Air Pollutants , Vehicle Emissions , Air Pollutants/analysis , Air Pollutants/toxicity , Carbon , Humans , Philippines , Respiratory System , Soot/analysis , Soot/toxicity , Transportation , Vehicle Emissions/analysis , Vehicle Emissions/toxicity , Young Adult
5.
Science ; 359(6374): 411-418, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29371462

ABSTRACT

Aerosol-cloud interactions remain the largest uncertainty in climate projections. Ultrafine aerosol particles smaller than 50 nanometers (UAP<50) can be abundant in the troposphere but are conventionally considered too small to affect cloud formation. Observational evidence and numerical simulations of deep convective clouds (DCCs) over the Amazon show that DCCs forming in a low-aerosol environment can develop very large vapor supersaturation because fast droplet coalescence reduces integrated droplet surface area and subsequent condensation. UAP<50 from pollution plumes that are ingested into such clouds can be activated to form additional cloud droplets on which excess supersaturation condenses and forms additional cloud water and latent heating, thus intensifying convective strength. This mechanism suggests a strong anthropogenic invigoration of DCCs in previously pristine regions of the world.

6.
Nature ; 539(7629): 416-419, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27776357

ABSTRACT

The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.


Subject(s)
Aerosols/analysis , Rain , Aerosols/chemistry , Biomass , Brazil , Fires , Particle Size , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
7.
Environ Sci Technol ; 50(20): 10823-10832, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27709898

ABSTRACT

Aerosol hygroscopic properties were linked to its chemical composition by using complementary online mass spectrometric techniques in a comprehensive chemical characterization study at a rural mountaintop station in central Germany in August 2012. In particular, atmospheric pressure chemical ionization mass spectrometry ((-)APCI-MS) provided measurements of organic acids, organosulfates, and nitrooxy-organosulfates in the particle phase at 1 min time resolution. Offline analysis of filter samples enabled us to determine the molecular composition of signals appearing in the online (-)APCI-MS spectra. Aerosol mass spectrometry (AMS) provided quantitative measurements of total submicrometer organics, nitrate, sulfate, and ammonium. Inorganic sulfate measurements were achieved by semionline ion chromatography and were compared to the AMS total sulfate mass. We found that up to 40% of the total sulfate mass fraction can be covalently bonded to organic molecules. This finding is supported by both on- and offline soft ionization techniques, which confirmed the presence of several organosulfates and nitrooxy-organosulfates in the particle phase. The chemical composition analysis was compared to hygroscopicity measurements derived from a cloud condensation nuclei counter. We observed that the hygroscopicity parameter (κ) that is derived from organic mass fractions determined by AMS measurements may overestimate the observed κ up to 0.2 if a high fraction of sulfate is bonded to organic molecules and little photochemical aging is exhibited.

8.
Proc Natl Acad Sci U S A ; 113(21): 5828-34, 2016 May 24.
Article in English | MEDLINE | ID: mdl-26944081

ABSTRACT

Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day.

SELECTION OF CITATIONS
SEARCH DETAIL