Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
J Am Vet Med Assoc ; 259(S2): 1-4, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35349477

ABSTRACT

In collaboration with the American College of Veterinary Pathologists.


Subject(s)
Pathology, Veterinary , Veterinarians , Animals , Humans , United States
2.
J Natl Cancer Inst ; 112(1): 95-106, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31077320

ABSTRACT

BACKGROUND: Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an RNA-binding protein that is aberrantly expressed in cancers. We and others have previously shown that reduced hnRNP K expression downmodulates tumor-suppressive programs. However, overexpression of hnRNP K is the more commonly observed clinical phenomenon, yet its functional consequences and clinical significance remain unknown. METHODS: Clinical implications of hnRNP K overexpression were examined through immunohistochemistry on samples from patients with diffuse large B-cell lymphoma who did not harbor MYC alterations (n = 75). A novel transgenic mouse model that overexpresses hnRNP K specifically in B cells was generated to directly examine the role of hnRNP K overexpression in mice (three transgenic lines). Molecular consequences of hnRNP K overexpression were determined through proteomics, formaldehyde-RNA-immunoprecipitation sequencing, and biochemical assays. Therapeutic response to BET-bromodomain inhibition in the context of hnRNP K overexpression was evaluated in vitro and in vivo (n = 3 per group). All statistical tests were two-sided. RESULTS: hnRNP K is overexpressed in diffuse large B-cell lymphoma patients without MYC genomic alterations. This overexpression is associated with dismal overall survival and progression-free survival (P < .001). Overexpression of hnRNP K in transgenic mice resulted in the development of lymphomas and reduced survival (P < .001 for all transgenic lines; Line 171[n = 30]: hazard ratio [HR] = 64.23, 95% confidence interval [CI] = 26.1 to 158.0; Line 173 [n = 31]: HR = 25.27, 95% CI = 10.3 to 62.1; Line 177 [n = 25]: HR = 119.5, 95% CI = 42.7 to 334.2, compared with wild-type mice). Clinical samples, mouse models, global screening assays, and biochemical studies revealed that hnRNP K's oncogenic potential stems from its ability to posttranscriptionally and translationally regulate MYC. Consequently, Hnrnpk overexpression renders cells sensitive to BET-bromodomain-inhibition in both in vitro and transplantation models, which represents a strategy for mitigating hnRNP K-mediated c-Myc activation in patients. CONCLUSION: Our findings indicate that hnRNP K is a bona fide oncogene when overexpressed and represents a novel mechanism for c-Myc activation in the absence of MYC lesions.


Subject(s)
Disease Susceptibility , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Lymphoma, B-Cell/etiology , Lymphoma, B-Cell/metabolism , Adult , Aged , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein K/chemistry , Humans , Lymphoma, B-Cell/mortality , Lymphoma, B-Cell/pathology , Male , Mice , Mice, Transgenic , Middle Aged , Neoplasm Staging , Phenotype , Protein Binding , Protein Interaction Domains and Motifs/drug effects , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
4.
Cancer Cell ; 28(4): 486-499, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26412324

ABSTRACT

hnRNP K regulates cellular programs, and changes in its expression and mutational status have been implicated in neoplastic malignancies. To directly examine its role in tumorigenesis, we generated a mouse model harboring an Hnrnpk knockout allele (Hnrnpk(+/-)). Hnrnpk haploinsufficiency resulted in reduced survival, increased tumor formation, genomic instability, and the development of transplantable hematopoietic neoplasms with myeloproliferation. Reduced hnRNP K expression attenuated p21 activation, downregulated C/EBP levels, and activated STAT3 signaling. Additionally, analysis of samples from primary acute myeloid leukemia patients harboring a partial deletion of chromosome 9 revealed a significant decrease in HNRNPK expression. Together, these data implicate hnRNP K in the development of hematological disorders and suggest hnRNP K acts as a tumor suppressor.


Subject(s)
Haploinsufficiency , Hematologic Neoplasms/pathology , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Chromosomal Instability , Chromosomes, Human, Pair 9/genetics , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K , Humans , Mice , Signal Transduction , Survival Analysis
5.
J Vasc Surg Venous Lymphat Disord ; 3(4): 409-420, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26992619

ABSTRACT

OBJECTIVE: The objectives of this study were to evaluate tensile strength retention of polydioxanone as a function of time in a swine venous system and to assess the feasibility of an absorbable inferior vena cava (IVC) filter made from polydioxanone in a pilot swine study. METHODS: Twenty strands (60 cm each) of size 1 polydioxanone absorbable suture (Ethicon, Somerville, NJ) were placed in the central venous system of domestic swine. Strands were harvested at weekly intervals during 10 weeks for tensile strength testing. Results were compared with control samples obtained from an in vitro engineered circulation system containing sodium phosphate buffer solution. Three IVC filters braided from polydioxanone suture were also catheter deployed in three swine to assess absorbable IVC filter feasibility. RESULTS: Polydioxanone retained 82% tensile strength in vitro vs 79% in vivo at 35 days (P > .22), the desired prophylactic duration. For IVC filters made from polydioxanone, technical success of placement was achieved in all three filters deployed (100%). Autologous thrombus deployed inferior to the filter remained trapped in the filter until thrombus resorption, with no evidence of pulmonary emboli on follow-up computed tomography. There were no instances of caval penetration, filter-induced IVC thrombosis, filter migration, or tilt >15 degrees with imaging and clinical follow-up carried out to 32 weeks. CONCLUSIONS: Strength retention of polydioxanone suture placed in the venous system of swine is similar to earlier in vitro studies out to 10 weeks (P > .06 for all weeks) and is more than sufficient (8.20 ± 0.37 kg mean load at break for size 1) to trap thrombus. Pilot animal study suggests that an absorbable polydioxanone IVC filter can be catheter deployed to capture and to hold iatrogenically administered autologous thrombus through resorption.


Subject(s)
Polydioxanone , Pulmonary Embolism/prevention & control , Vena Cava Filters , Absorbable Implants , Animals , Follow-Up Studies , Pilot Projects , Swine , Tensile Strength , Vena Cava, Inferior , Venous Thrombosis
SELECTION OF CITATIONS
SEARCH DETAIL