Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Type of study
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 211: 111812, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33472112

ABSTRACT

Due to the potential hazard of diclofenac on aquatic organisms and the lack of higher-tier ecotoxicological studies, a long-term freshwater mesocosm experiment was set up to study the effects of this substance on primary producers and consumers at environmentally realistic nominal concentrations 0.1, 1 and 10 µg/L (average effective concentrations 0.041, 0.44 and 3.82 µg/L). During the six-month exposure period, the biovolume of two macrophyte species (Nasturtium officinale and Callitriche platycarpa) significantly decreased at the highest treatment level. Subsequently, a decrease in dissolved oxygen levels was observed. High mortality rates, effects on immunity, and high genotoxicity were found for encaged zebra mussels (Dreissena polymorpha) in all treatments. In the highest treatment level, one month after the beginning of the exposure, mortality of adult fish (Gasterosteus aculeatus) caused effects on the final population structure. Total abundance of fish and the percentage of juveniles decreased whereas the percentage of adults increased. This led to an overall shift in the length frequency distribution of the F1 generation compared to the control. Consequently, indirect effects on the community structure of zooplankton and macroinvertebrates were observed in the highest treatment level. The No Observed Effect Concentration (NOEC) value at the individual level was < 0.1 µg/L and 1 µg/L at the population and community levels. Our study showed that in more natural conditions, diclofenac could cause more severe effects compared to those observed in laboratory conditions. The use of our results for regulatory matters is also discussed.


Subject(s)
Aquatic Organisms/physiology , Diclofenac/toxicity , Water Pollutants, Chemical/toxicity , Animals , Dreissena/drug effects , Fishes , Fresh Water/chemistry , Sentinel Species , Smegmamorpha , Zooplankton/drug effects
2.
J Appl Microbiol ; 120(2): 498-508, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26551548

ABSTRACT

AIMS: The objective of this study was to evaluate if freshwater bivalves can be used to detect the presence of Toxoplasma gondii in water bodies. METHODS AND RESULTS: Zebra mussels (Dreissena polymorpha) were caged for 1 month upstream and downstream of the discharge points of wastewater treatment plants (WWTPs). Physiological status was assessed to assure good health of bivalves during transplantation. The presence of T. gondii was investigated in mussel tissues by qPCR. In autumn, T. gondii was detected in mussels caged downstream of the discharge points of two WWTPs. In spring, it was detected upstream of one WWTP. CONCLUSIONS: For the first time, T. gondii DNA has been shown in a continental mollusc in environmental conditions. This highlights the interest of an active approach that could be applied independently of the presence or accessibility of autochthonous populations, and underlines the presence of T. gondii in natural waters under pressure of WWTP discharge at a certain time of the year. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that transplanted zebra mussels could be used as biosamplers to reveal contamination of freshwater systems by T. gondii.


Subject(s)
Dreissena/parasitology , Fresh Water/parasitology , Toxoplasma/isolation & purification , Animals , Seasons , Toxoplasma/classification , Toxoplasma/genetics , Water Pollution/analysis
3.
Environ Sci Pollut Res Int ; 22(18): 13693-701, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25772876

ABSTRACT

Water quality is a public health concern that calls for relevant biomonitoring programs. Molecular tools such as polymerase chain reaction (PCR) are progressively becoming more sensitive and more specific than conventional techniques to detect pathogens in environmental samples such as water and organisms. The zebra mussel (Dreissena polymorpha) has already been demonstrated to accumulate and concentrate various human waterborne pathogens. In this study, first, a spiking experiment to evaluate detection levels of Toxoplasma gondii DNA in zebra mussel organs using real-time PCR was conducted. Overall, lower DNA levels in the hemolymph, digestive gland, and remaining tissues (gonad and foot) were detected compared to mantle, muscle, and gills. Second, an in vivo experiment with 1000 T. gondii oocysts per mussel and per day for 21 consecutive days, followed by 14 days of depuration time in protozoa-free water was performed. T. gondii DNA was detected in all organs, but greatest concentrations were observed in hemolymph and mantle tissues compared to the others organs at the end of the depuration period. These results suggest that (i) the zebra mussel is a potential new tool for measuring T. gondii concentrations and (ii) real-time PCR is a suitable method for pathogen detection in complex matrices such as tissues.


Subject(s)
Dreissena/parasitology , Toxoplasma/genetics , Animals , DNA, Protozoan/genetics , Host Specificity , Real-Time Polymerase Chain Reaction , Toxoplasma/isolation & purification , Water Quality
4.
Water Res ; 48: 148-55, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24112626

ABSTRACT

Cryptosporidium parvum, Giardia duodenalis and Toxoplasma gondii are ubiquitous pathogens, which waterborne transmission has been largely demonstrated. Since they can be found in various watercourses, interactions with aquatic organisms are possible. Protozoan detection for watercourses biomonitoring is currently based on large water filtration. The zebra mussel, Dreissena polymorpha, is a choice biological model in ecotoxicological studies which are already in use to detect chemical contaminations in watercourses. In the present study, the zebra mussel was tested as a new tool for detecting water contamination by protozoa. In vivo exposures were conducted in laboratory experiments. Zebra mussel was exposed to various protozoan concentrations for one week. Detection of protozoa was realized by Taqman real time qPCR. Our experiments evidenced C. parvum, G. duodenalis and T. gondii oocyst bioaccumulation by mussels proportionally to ambient contamination, and significant T. gondii prevalence was observed in muscle tissue. To our knowledge, this is the first study that demonstrates T. gondii oocyst accumulation by zebra mussel. The results from this study highlight the capacity of zebra mussels to reveal ambient biological contamination, and thus to be used as a new effective tool in sanitary biomonitoring of water bodies.


Subject(s)
Bivalvia/parasitology , Cryptosporidium parvum/isolation & purification , Environmental Monitoring , Giardia lamblia/isolation & purification , Toxoplasma/isolation & purification , Animals , Real-Time Polymerase Chain Reaction
5.
Ecotoxicology ; 22(5): 815-24, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23744483

ABSTRACT

Data regarding the link between DNA integrity of germ cells and the quality of progeny in fish exposed to genotoxicant are scarce although such information is of value to understand genotoxic effects of contaminants in aquatic fauna. This work aimed at studying the consequences of a parental exposure during the breeding season on offspring quality in three-spined stickleback. After in vivo exposure of adult fish to methyl methane sulfonate, a model alkylating compound, a clear increase in DNA damage was observed in erythrocytes of both genders, here used as a biomarker of exposure. MMS exposure significantly affected sperm DNA integrity but neither female fecundity nor fertilization success. In order to understand the contribution of each sex to potential deleterious effects in progeny due to parental exposure, mating of males and females exposed or not to MMS, was carried out. Exposure of both males and females or of males alone led to a significant increase in both mortality during embryo-larval stages and abnormality rate at hatching that appeared to be sensitive stages. Thus, in accordance with recent studies carried out in other freshwater fish species, such development defects in progeny were clearly driven by male genome, known to be devoid of DNA repair capacity in spermatozoa. The next step will be to investigate the link between DNA damage in stickleback sperm and reproductive impairment in natural populations exposed to complex mixture of genotoxicants.


Subject(s)
Maternal Exposure/adverse effects , Methyl Methanesulfonate/toxicity , Mutagens/toxicity , Ovum/drug effects , Paternal Exposure/adverse effects , Spermatozoa/drug effects , Water Pollutants/toxicity , Abnormalities, Drug-Induced , Animals , DNA Damage , Female , Male , Reproduction/drug effects , Smegmamorpha/physiology
6.
Environ Sci Pollut Res Int ; 20(2): 778-89, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23001759

ABSTRACT

Toxoplasma gondii, Cryptosporidium parvum, and Giardia duodenalis are human waterborne protozoa. These worldwide parasites had been detected in various watercourses as recreational, surface, drinking, river, and seawater. As of today, water protozoa detection was based on large water filtration and on sample concentration. Another tool like aquatic invertebrate parasitism could be used for sanitary and environmental biomonitoring. In fact, organisms like filter feeders could already filtrate and concentrate protozoa directly in their tissues in proportion to ambient concentration. So molluscan shellfish can be used as a bioindicator of protozoa contamination level in a site since they were sedentary. Nevertheless, only a few researches had focused on nonspecific parasitism like protozoa infection on aquatic invertebrates. Objectives of this review are twofold: Firstly, an overview of protozoa in worldwide water was presented. Secondly, current knowledge of protozoa parasitism on aquatic invertebrates was detailed and the lack of data of their biological impact was pointed out.


Subject(s)
Environmental Monitoring/methods , Invertebrates/parasitology , Water/parasitology , Animals , Aquatic Organisms/parasitology , Cryptosporidium/physiology , Giardia/pathogenicity , Giardia/physiology , Groundwater/parasitology , Shellfish/parasitology , Toxoplasma/pathogenicity , Toxoplasma/physiology
7.
Reprod Toxicol ; 36: 6-11, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23178896

ABSTRACT

Many xenobiotics released in the aquatic environment exhibit a genotoxic potential toward organisms. Long term exposure to such compounds is expected to lead to multigenerational reproductive defects, further influencing the recruitment rate and hence, the population dynamics. Paternal exposure to genotoxicants was previously shown to increase abnormal development in the progeny of mammalian or aquatic species. The aim of this study was to evaluate the relationship between DNA damage in sperm of the fish three-spined stickleback and progeny developmental defects. Spermatozoa were exposed ex vivo to an alkylating agent (methyl methanesulfonate) before in vitro fertilization and DNA damage was assessed by the alkaline comet assay. A significant relationship between abnormal development and sperm DNA damage was underlined. This study illustrates the interest to use germ cell DNA damage after ex vivo exposure to evaluate the impact of genotoxic compounds on progeny fitness in aquatic organisms.


Subject(s)
Alkylating Agents/toxicity , DNA Damage , Embryonic Development/drug effects , Mutagens/toxicity , Paternal Exposure/adverse effects , Smegmamorpha/embryology , Spermatozoa/drug effects , Animals , Antineoplastic Agents, Alkylating/toxicity , Comet Assay , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/drug effects , Fertilization in Vitro/drug effects , Larva/drug effects , Larva/growth & development , Male , Methyl Methanesulfonate/toxicity , Mutagenicity Tests/methods , Osmolar Concentration , Random Allocation , Smegmamorpha/abnormalities , Smegmamorpha/growth & development , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL