Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters








Publication year range
1.
Adv Healthc Mater ; 13(19): e2304648, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38597827

ABSTRACT

Drug-resistant and metastatic cancer cells such as a small population of cancer stem cells (CSCs) play a crucial role in metastasis and relapse. Conventional small-molecule chemotherapeutics, however, are unable to eradicate drug-resistant CSCs owing to limited interface inhibitory effects. Herein, it is reported that enhanced interfacial inhibition leading to eradication of drug-resistant CSCs can be dramatically induced by self-insertion of bioactive graphene quantum dots (GQDs) into DNA major groove (MAG) sites in cancer cells. Since transcription factors regulate gene expression at the MAG site, MAG-targeted GQDs exert greatly enhanced interfacial inhibition, downregulating the expression of a collection of cancer stem genes such as ALDH1, Notch1, and Bmi1. Moreover, the nanoscale interface inhibition mechanism reverses cancer multidrug resistance (MDR) by inhibiting MDR1 gene expression when GQDs are used at a nontoxic concentration (1/4 × half-maximal inhibitory concentration (IC50)) as the MDR reverser. Given their high efficacy in interfacial inhibition, CSC-mediated migration, invasion, and metastasis of cancer cells can be substantially blocked by MAG-targeted GQDs, which can also be harnessed to sensitize clinical cytotoxic agents for improved efficacy in combination chemotherapy. These findings elucidate the inhibitory effects of the enhanced nano-bio interface at the MAG site on eradicating CSCs, thus preventing cancer metastasis and recurrence.


Subject(s)
Drug Resistance, Neoplasm , Graphite , Neoplastic Stem Cells , Quantum Dots , Humans , Graphite/chemistry , Graphite/pharmacology , Quantum Dots/chemistry , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Aldehyde Dehydrogenase 1 Family/metabolism , Cell Movement/drug effects , Retinal Dehydrogenase/metabolism , Neoplasm Metastasis , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Resistance, Multiple/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Animals
2.
Adv Mater ; 36(25): e2313670, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490191

ABSTRACT

The immunosuppressive tumor microenvironment (TME) is a huge hurdle in immunotherapy. Sono-immunotherapy is a new treatment modality that can reverse immunosuppressive TME, but the sonodynamic effects are compromised by overexpressed glutathione (GSH) and hypoxia in the TME. Herein, this work reports a new sono-immunotherapy strategy using Pdδ+ single atom catalysts to enhance positive sonodynamic responses to the immunosuppressive and sono-suppressive TME. To demonstrate this technique, this work employs rich and reductive Ti vacancies in Ti3-xC2Ty nanosheets to construct the atomically dispersed Pd-C3 single atom catalysts (SAC) with Pd content up to 2.5 wt% (PdSA/Ti3-xC2Ty). Compared with Pd nanoparticle loaded Ti3-xC2Ty, PdSA/Ti3-xC2Ty single-atom enzyme showed augmented sonodynamic effects that are ascribed to SAC facilitated electron-hole separation, rapid depletion of overexpressed GSH by ultrasound (US) excited holes, and catalytic decomposition of endogenous H2O2 for relieving hypoxia. Importantly, the sono-immunotherapy strategy can boost abscopal antitumor immune responses by driving maturation of dendritic cells and polarization of tumor-associated macrophages into the antitumoral M1 phenotype. Bilateral tumor models demonstrate the complete eradication of localized tumors and enhance metastatic regression. Th strategy highlights the potential of single-atom catalysts for robust sono-immunotherapy by remodeling the tumor microenvironment.


Subject(s)
Immunotherapy , Tumor Microenvironment , Animals , Mice , Catalysis , Cell Line, Tumor , Ultrasonic Therapy/methods , Titanium/chemistry , Palladium/chemistry , Glutathione/metabolism , Glutathione/chemistry , Humans
3.
Adv Healthc Mater ; 13(8): e2302659, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38011489

ABSTRACT

Developing next-generation antibiotics to eliminate multidrug-resistant (MDR) bacteria/fungi and stubborn biofilms is challenging, because of the excessive use of currently available antibiotics. Herein, the fabrication of anti-infection graphene quantum dots (GQDs) is reported, as a new class of topoisomerase (Topo) targeting nanoantibiotics, by modification of rich N-heterocycles (pyridinic N) at edge sites. The membrane-penetrating, nucleus-localizing, DNA-binding GQDs not only damage the cell walls/membranes of bacteria or fungi, but also inhibit DNA-binding proteins, such as Topo I, thereby affecting DNA replication, transcription, and recombination. The obtained GQDs exhibit excellent broad-spectrum antimicrobial activity against non-MDR bacteria, MDR bacteria, endospores, and fungi. Beyond combating planktonic microorganisms, GQDs inhibit the formation of biofilms and can kill live bacteria inside biofilms. RNA-seq further demonstrates the upregulation of riboflavin biosynthesis genes, DNA repair related genes, and transport proteins related genes in methicillin-resistant S. aureus (MRSA) in response to the stress induced by GQDs. In vivo animal experiments indicate that the biocompatible GQDs promote wound healing in MRSA or C. albicans-infected skin wound models. Thus, GQDs may be a promising antibacterial and antifungal candidate for clinical applications in treating infected wounds and eliminating already-formed biofilms.


Subject(s)
Anti-Infective Agents , Graphite , Methicillin-Resistant Staphylococcus aureus , Quantum Dots , Animals , Graphite/chemistry , Quantum Dots/chemistry , Anti-Bacterial Agents/chemistry
4.
Nat Commun ; 13(1): 5735, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36175446

ABSTRACT

Theranostic sonosensitizers with combined sonodynamic and near infrared (NIR) imaging modes are required for imaging guided sonodynamic therapy (SDT). It is challenging, however, to realize a single material that is simultaneously endowed with both NIR emitting and sonodynamic activities. Herein, we report the design of a class of NIR-emitting sonosensitizers from a NIR phosphorescent carbon dot (CD) material with a narrow bandgap (1.62 eV) and long-lived excited triplet states (11.4 µs), two of which can enhance SDT as thermodynamically and dynamically favorable factors under low-intensity ultrasound irradiation, respectively. The NIR-phosphorescent CDs are identified as bipolar quantum dots containing both p- and n-type surface functionalization regions that can drive spatial separation of e--h+ pairs and fast transfer to reaction sites. Importantly, the cancer-specific targeting and high-level intratumor enrichment of the theranostic CDs are achieved by cancer cell membrane encapsulation for precision SDT with complete eradication of solid tumors by single injection and single irradiation. These results will open up a promising approach to engineer phosphorescent materials with long-lived triplet excited states for sonodynamic precision tumor therapy.


Subject(s)
Carbon , Quantum Dots , Cell Encapsulation , Cell Membrane , Light
5.
J Mater Chem B ; 10(17): 3357-3365, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35380572

ABSTRACT

Developing efficient therapeutic strategies for combating bacterial infection remains a challenge owing to the indiscriminate utilization of antibiotics and the prevalence of multidrug-resistant (MDR) bacteria. Herein, highly graphitic-N-doped graphene quantum dots (N-GQDs) with efficient NIR-II photothermal conversion properties were synthesized for the first time for photothermal antibacterial therapy. The obtained N-GQDs exhibited strong NIR absorption ranging from 700 to 1200 nm, achieving high photothermal conversion efficiency of 77.8% and 50.4% at 808 and 1064 nm, respectively. Outstanding antibacterial and antibiofilm activities against MDR bacteria (methicillin-resistant Staphylococcus aureus, MRSA) were achieved by the N-GQDs in the presence of an 808 or 1064 nm laser. In vivo investigations verified that the generation of hyperthermia by N-GQDs plus a NIR-II laser can combat MDR bacterial infections and thus significantly accelerate wound healing. Our work provides a novel carbon-based nanomaterial as a photothermal antibacterial agent for efficiently avoiding bacterial resistance and fighting MDR bacterial infections.


Subject(s)
Graphite , Methicillin-Resistant Staphylococcus aureus , Quantum Dots , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Graphite/pharmacology
6.
Small ; 18(6): e2103528, 2022 02.
Article in English | MEDLINE | ID: mdl-34859576

ABSTRACT

Sonodynamic therapy as a promising noninvasive modality is being developed for tumor therapy, but there is a lack of next-generation sonosensitizers that can generate full ROS at high yields and simultaneously deplete elevated levels of glutathione (GSH) in tumor cells. Semiconductor p-n junctions are engineered as high-efficacy sonosensitizers for sonodynamic tumor eradication using pyridine N-doped carbon dots (N-CDs) as a p-type semiconductor and oxygen-deficient TiO2-x nanosheets as a n-type semiconductor. The rate constants of 1 O2 and •OH generation by ultrasound-excited N-CD@TiO2-x p-n junctions are 4.3 and 4.5 times higher than those of TiO2 , respectively. A Z-scheme carrier migration mechanism in the p-n junction achieving the rapid spatial separation of the ultrasound-generated electron-hole pairs for enhanced full ROS production is proposed. GSH-cleavable, Pt-crosslinked, N-doped CD fluorescent probes to detect the presence of intracellular GSH are also constructed. A GSH-responsive, p-n junction platform (Pt/N-CD@TiO2-x ) with integrated GSH detection, GSH depletion, and enhanced sonodynamic performance is then assembled. Malignant tumors are completely eradicated without relapse via intravenous administration of low-dose Pt/N-CD@TiO2-x under ultrasound irradiation. This work substantiates the great potential of biocompatible, GSH-responsive p-n junctions as next-generation sonosensitizers via p-n junction-enhanced ROS generation and metal ion oxidation of intracellular GSH.


Subject(s)
Platinum , Ultrasonic Therapy , Carbon , Cell Line, Tumor , Glutathione , Humans , Reactive Oxygen Species , Recurrence
7.
ACS Appl Mater Interfaces ; 13(38): 45325-45334, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34533945

ABSTRACT

Sonosensitizers play crucial roles in the controlled production of reactive oxygen species (ROS) under ultrasound (US) irradiation with high tissue-penetration depth for noninvasive solid tumor therapy. It is desirable to fabricate structurally simple yet multifunctional sonosensitizers from ultrafine nanoparticles for ROS-based multimode therapy to overcome monomode limitations such as low ROS production yields and endogenous reductive glutathione (GSH) to ROS-based treatment resistance. We report the facile high-temperature solution synthesis of ultrafine W-doped TiO2 (W-TiO2) nanorods for exploration of their sonodynamic, chemodynamic, and GSH-depleting activities in sonodynamic-chemodynamic combination tumor therapy. We found that W5+ and W6+ ions doped in W-TiO2 nanorods play multiple roles in enhancing their ROS production. First, W doping narrows the band gap from 3.2 to 2.3 eV and introduces oxygen and Ti vacancies for enhancing their sonodynamic performance. Second, W5+ doping endows W-TiO2 nanorods with Fenton-like reaction activity to produce •OH from endogenous H2O2 in the tumor. Third, W6+ ions reduce endogenous GSH to glutathione disulfide (GSSG) and, in turn, form W5+ ions that further enhance their chemodynamic activity, which greatly modifies thae oxidation-reduction tumor microenvironment in the tumor. In vivo experiments display the excellent ability of W-TiO2 nanorods for enhanced tumor eradication in human osteosarcoma models under single US irradiation. Importantly, the ultrafine nanorod morphology facilitates rapid excretion from the body, displaying no significant systemic toxicity. Our work suggests that multivalent metal doping in ultrafine nanomaterials is an effective and simple strategy for the introduction of new functions for ROS-based multimode therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Bone Neoplasms/drug therapy , Nanotubes/chemistry , Osteosarcoma/drug therapy , Radiation-Sensitizing Agents/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/radiation effects , Cell Line, Tumor , Female , Glutathione/metabolism , Humans , Hydroxyl Radical/metabolism , Mice, Inbred BALB C , Nanotubes/radiation effects , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/radiation effects , Singlet Oxygen/metabolism , Titanium/chemistry , Titanium/radiation effects , Titanium/therapeutic use , Tumor Microenvironment/drug effects , Tungsten/chemistry , Tungsten/radiation effects , Tungsten/therapeutic use , Ultrasonic Therapy , Ultrasonic Waves
8.
ACS Appl Mater Interfaces ; 11(48): 44949-44960, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31714729

ABSTRACT

Metal-free layered black phosphorus (BP) nanosheets with an excellent photothermal effect and large surface areas have been widely applied in biomedicine but are easily oxidized in ambient conditions yielding insulating phosphorus oxides adsorbed on its surface. Several chemical-functionalized strategies have been explored to protect thin layers of BP; however, the performance of passivated BP often decreases significantly, falling behind the single BP due to the strong structure perturbation. Herein, we designed and constructed 0D/2D hybrid photothermal agents by assembling NIR-II-responsive carbon dots (NIR-II-CDs) on BP nanosheets. NIR-II-CDs improve the ambient stability of BP by isolating them from water and oxygen and enhance the photothermal properties of BP nanosheets. Such NIR-II-CD/BP hybrids strengthen the light-harvesting ability, achieving high photothermal conversion efficiencies in the NIR-I (77.3%) and NIR-II (61.4%) windows, which is significantly higher than that of pristine BP (49.5 and 28.4% at 808 and 1064 nm). Owing to the intrinsic advantage of 1064 nm laser and the excellent PTT effect of our NIR-II-CD/BP hybrids, complete tumor eradication was realized in a deep-tissue tumor model.


Subject(s)
Carbon/chemistry , Nanostructures/chemistry , Neoplasms/drug therapy , Phosphorus/chemistry , Photochemotherapy/methods , Animals , Cell Line, Tumor , Humans , Infrared Rays , Lasers , Mice , Photochemotherapy/instrumentation , Quantum Dots/chemistry
9.
Small ; 15(21): e1901083, 2019 May.
Article in English | MEDLINE | ID: mdl-30993869

ABSTRACT

MoS2 nanosheets as a promising 2D nanomaterial have extensive applications in energy storage and conversion, but their electrochemical performance is still unsatisfactory as an anode for efficient Li+ /Na+ storage. In this work, the design and synthesis of vertically grown MoS2 nanosheet arrays, decorated with graphite carbon and Fe2 O3 nanoparticles, on flexible carbon fiber cloth (denoted as Fe2 O3 @C@MoS2 /CFC) is reported. When evaluated as an anode for lithium-ion batteries, the Fe2 O3 @C@MoS2 /CFC electrode manifests an outstanding electrochemical performance with a high discharge capacity of 1541.2 mAh g-1 at 0.1 A g-1 and a good capacity retention of 80.1% at 1.0 A g-1 after 500 cycles. As for sodium-ion batteries, it retains a high reversible capacity of 889.4 mAh g-1 at 0.5 A g-1 over 200 cycles. The superior electrochemical performance mainly results from the unique 3D ordered Fe2 O3 @C@MoS2 array-type nanostructures and the synergistic effect between the C@MoS2 nanosheet arrays and Fe2 O3 nanoparticles. The Fe2 O3 nanoparticles act as spacers to steady the structure, and the graphite carbon could be incorporated into MoS2 nanosheets to improve the conductivity of the whole electrode and strengthen the integration of MoS2 nanosheets and CFC by the adhesive role, together ensuring high conductivity and mechanical stability.

10.
Nanoscale ; 11(15): 7209-7220, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30920555

ABSTRACT

Currently, one of the major hurdles hindering the clinical applications of photothermal therapy (PTT) and photothermal-chemo combination therapy (PCT) is the lack of highly efficient, readily derived, and irradiation-safe photothermal agents in the biologically transparent window. Herein, we report the first design and rational construction of 0D/2D/0D sandwich heterojunctions for greatly enhanced PTT and PCT performances using 0D N-doped carbon dots and 2D MoS2 nanosheets as the assembly units. The well-matching heterojunctions enabled an additional enhancement in NIR absorbance owing to the carrier injection from carbon dots to MoS2 nanosheets, and achieved a much higher photothermal conversion efficiency (78.2%) than that of single NIR-CDs (37.6%) and MoS2 (38.3%) only. In virtue of the heterojunction-based PTT, complete tumor recession without recurrence or pulmonary metastasis was realized at an ultralow and safe laser exposure (0.2 W cm-2) below the skin tolerance irradiation threshold. Furthermore, by taking advantage of the strong X-ray attenuation and effective drug loading capacity of MoS2 nanosheets, the CT imaging-guided PCT was achieved at 0.1 W cm-2, without inducing noticeable toxic side effects. Our findings can substantiate the potential of a novel 0D/2D heterojunction for cancer theranostics.


Subject(s)
Carbon , Disulfides , Hyperthermia, Induced , Molybdenum , Photoacoustic Techniques , Photochemotherapy , Quantum Dots , Tomography, X-Ray Computed , Animals , Carbon/chemistry , Carbon/pharmacology , Cell Line, Tumor , Combined Modality Therapy , Disulfides/chemistry , Disulfides/pharmacology , Humans , Mice , Molybdenum/chemistry , Molybdenum/pharmacology , Neoplasm Metastasis , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Quantum Dots/chemistry , Quantum Dots/therapeutic use , Quantum Dots/ultrastructure , Xenograft Model Antitumor Assays
11.
Nanoscale ; 10(48): 22871-22883, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30488932

ABSTRACT

Hierarchical N-doped porous carbon has been prepared by assembling N-doped graphene quantum dots (N-GQDs) onto a carbonized metal-organic framework (cMOF-5) and used as an electrode material for supercapacitors. In this hierarchical composite structure, cMOF-5 provides an effective cubic porous framework with a large specific surface area and good electrical conductivity, while N-GQDs play an important role in enhancing the pseudocapacitive activity and improving the surface wettability of the electrode. Therefore, the N-GQD/cMOF-5 composite electrode material exhibits an outstanding specific capacitance of 780 F g-1 at 10 mV s-1 in a three-electrode system. Moreover, the composite electrode assembled in symmetric supercapacitors also displays a high specific capacitance of 294.1 F g-1 at 0.5 A g-1, excellent rate capacity and remarkable cycling stability with 94.1% of the initial capacitance retained after 5000 cycles at 5 A g-1. When used as the positive electrode, the N-GQD/cMOF-5//AC asymmetric supercapacitor exhibits an energy density of 14.4 W h kg-1 at a power density of 400.6 W kg-1, while the capacitance retention after 5000 cycles reaches 90.1%. The current N-GQD/cMOF-5 composite electrode paves a feasible avenue to improve the capacitive performances of supercapacitors by constructing heteroatom-doped, hierarchically porous carbon architectures.

12.
Nanoscale ; 10(34): 16040-16049, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30106073

ABSTRACT

MoO3 is a promising anode material for energy storage, but its electrochemical performance is still unsatisfactory. Herein, α-MoO3 nanosheets vertically grown on activated carbon fiber cloth as superior anode materials for Li- and Na-ion batteries were achieved by the method of controlled preparation. For Li-ion batteries, the resulting MoO3 array electrodes exhibit a high discharge capacity of 4.48 mA h cm-2 (1780 mA h g-1) at 0.1 mA cm-2 and outstanding cycling stability at 0.5 mA cm-2 (94% capacity retention after 200 cycles). Moreover, for Na-ion batteries, they also show an excellent electrochemical performance with a discharge capacity of 2.5 mA h cm-2 (1621 mA h g-1) at 0.1 mA cm-2 and capacity retention of 90% after 200 cycles at 0.2 mA cm-2. This study suggests that MoO3 array electrodes can be hopefully used as promising anode materials for energy storage applications.

13.
Small ; 14(39): e1801498, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30151984

ABSTRACT

Flexible supercapacitors have shown enormous potential for portable electronic devices. Herein, hierarchical 3D all-carbon electrode materials are prepared by assembling N-doped graphene quantum dots (N-GQDs) on carbonized MOF materials (cZIF-8) interweaved with carbon nanotubes (CNTs) for flexible all-solid-state supercapacitors. In this ternary electrode, cZIF-8 provides a large accessible surface area, CNTs act as the electrical conductive network, and N-GQDs serve as highly pseudocapactive materials. Due to the synergistic effect and hierarchical assembly of these components, N-GQD@cZIF-8/CNT electrodes exhibit a high specific capacitance of 540 F g-1 at 0.5 A g-1 in a 1 m H2 SO4 electrolyte and excellent cycle stability with 90.9% capacity retention over 8000 cycles. The assembled supercapacitor possesses an energy density of 18.75 Wh kg-1 with a power density of 108.7 W kg-1 . Meanwhile, three supercapacitors connected in series can power light-emitting diodes for 20 min. All-solid-state N-GQD@cZIF-8/CNT flexible supercapacitor exhibits an energy density of 14 Wh kg-1 with a power density of 89.3 W kg-1 , while the capacitance retention after 5000 cycles reaches 82%. This work provides an effective way to construct novel electrode materials with high energy storage density as well as good cycling performance and power density for high-performance energy storage devices via the rational design.

14.
Nanoscale ; 9(35): 13195-13202, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28853478

ABSTRACT

Carbon quantum dots (CQDs) have attracted much attention owing to their unique optical properties and a wide range of applications. The fabrication and control of CQDs with organic solubility and long-wavelength emission are still urgent issues to be addressed for their practical use in LEDs. Here, organic-soluble CQDs were produced at a high yield of ∼90% by a facile solvent engineering treatment of 1,3,6-trinitropyrene, which were simultaneously used as the nitrogen and carbon sources. The optical properties of the organic-soluble CQDs (o-CQDs) were investigated in nonpolar and polar solvents, films, and LED devices. The CQDs have a narrow size distribution around 2.66 nm, and can be dispersed in different organic solvents. Significantly, the as-prepared CQDs present an excitation-independent emission at 607 nm with fluorescence quantum yields (QYs) up to 65.93% in toluene solution. A pronounced solvent effect was observed and their strong absorption bands can be tuned in the whole visible region (400-750 nm) by changing the solvent. The CQDs in various solvents can emit bright, excitation-independent, long-wavelength fluorescence (orange to red). Furthermore, benefiting from the unique oil-solution properties, the as-prepared CQDs can be processed in thin film and device forms to meet the requirements of various applications, such as phosphor-based white-light LEDs. The color coordinate for these CQD modified LEDs is realized at (0.32, 0.31), which is close to pure white light (0.33, 0.33).

15.
J Mater Chem B ; 5(27): 5355-5361, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-32264074

ABSTRACT

The wide use of functionalized graphene quantum dots (GQDs) in stable dispersions is currently hampered by the lack of industrially scalable, low-cost, and eco-friendly methods. Herein we report the first realization of the industrial-scale (20 L) production of high-quality fluorescent GQDs via a molecular fusion route from a low-cost, active derivative of pyrene. By a wholly "green", conventional sulfonation reaction at low hydrothermal temperature, the molecular precursor is wholly converted into highly water-soluble, sulfonated GQDs without byproducts such as insoluble carbon. The GQDs show superior optical properties including strong excitonic absorption bands extended to ∼530 nm, bright photoluminescence (PL) at 510 nm with a quantum yield of up to 42%, and a wide PLE spectrum. The edge-site sulfonic functionalization enables the GQDs to stably re-disperse in water and maintains high fluorescence activities even after annealing up to 250 °C, whereas amino GQDs and graphene oxide sheets markedly aggregate after drying at low temperature. The GQDs are applied as biological fluorescent probes for visualizing and targeting Golgi apparatus in Hela and MCF7 live cells. The low-cost mass production, excellent biocompatibility, and superior optical properties make the GQDs an attractive alternative probe for efficient Golgi targeted imaging in biomedical applications.

16.
ACS Nano ; 9(11): 11351-61, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26434377

ABSTRACT

Tin dioxide (SnO2) and graphene are unique strategic functional materials with widespread technological applications, particularly in the areas of solar batteries, optoelectronic devices, and solid-state gas sensors owing to advances in optical and electronic properties. Versatile strategies for microstructural evolution and related performance of SnO2 and graphene composites are of fundamental importance in the development of electrode materials. Here we report that a novel composite, SnO2 quantum dots (QDs) supported by graphene nanosheets (GNSs), has been prepared successfully by a simple hydrothermal method and electron-beam irradiation (EBI) strategies. Microstructure analysis indicates that the EBI technique can induce the exfoliation of GNSs and increase their interlayer spacing, resulting in the increase of GNS amorphization, disorder, and defects and the removal of partial oxygen-containing functional groups on the surface of GNSs. The investigation of SnO2 nanoparticles supported by GNSs (SnO2/GNSs) reveals that the GNSs are loaded with SnO2 QDs, which are dispersed uniformly on both sides of GNSs. Interestingly, the electrochemical performance of SnO2/GNSs indicates that SnO2 QDs supported by a 210 kGy irradiated GNS shows excellent cycle response, high specific capacity, and high reversible capacity. This novel SnO2/GNS composite has potential practical applications in SnO2 electrode materials during Li(+) insertion/extraction.

17.
J Phys Chem A ; 119(13): 3299-309, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25756752

ABSTRACT

The electronic structures and absorption spectra for a series of acene-based organic dyes and the adsorption energy and optical properties for these dyes adsorbed on (TiO2)38 have been investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The effects of acene units and different substitution positions of electron donors on the optoelectronic properties of the acene-modified dyes are demonstrated. The photophysical properties of tetracene- and pentacene-based dyes are found to be tuned by changing the size of acene and the substitution position of the donor. The donor sites have a significant influence on the absorption wavelength mainly because of different molecular orbital (MO) contributions of the highest occupied molecular orbital (HOMO) on the bridging acene units, and the increasing MO contribution would lead to the red shift in the absorption spectra. Meanwhile, the donor is located close to the center of the π-conjugated bridge, and the absorption spectra are extended. The adsorption energy and optical properties of tetracene- and pentacene-based dyes adsorbed on (TiO2)38 suggest that acene-bridged dyes could be adsorbed on the TiO2 surface and inject electrons into semiconductors effectively. Then the results obtained from the hexacene-based dyes confirm the conclusions proposed from the tetracene- and pentence-based dyes. This study will provide a useful reference to the future design and optimization of acene dyes for dye-sensitized solar cell applications.

18.
ACS Appl Mater Interfaces ; 7(7): 3949-59, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25626157

ABSTRACT

In this work, a novel catalyst, Fe-species-loaded mesoporous manganese dioxide (Fe/M-MnO2) urchinlike superstructures, has been fabricated successfully in a two-step technique. First, mesoporous manganese dioxide (M-MnO2) urchinlike superstructures have been synthesized by a facile method on a soft interface between CH2Cl2 and H2O without templates. Then the M-MnO2-immobilized iron oxide catalyst was obtained through wetness impregnation and calcination. Microstructural analysis indicated that the M-MnO2 was composed of urchinlike hollow submicrospheres assembled by nanorod building blocks with rich mesoporosity. The Fe/M-MnO2 retained the hollow submicrospheres, which were covered by hybridized composites with broken and shortened MnO2 nanorods. Energy-dispersive X-ray microanalysis was used to determine the availability of Fe loading processes and the homogeneity of Fe in Fe/M-MnO2. Catalytic performances of the M-MnO2 and Fe/M-MnO2 were evaluated in catalytic wet hydrogen peroxide oxidation of methylene blue (MB), a typical organic pollutant in dyeing wastewater. The catalytic degradation displayed highly efficient discoloration of MB when using the Fe/M-MnO2 catalyst, e.g., ca. 94.8% of MB was decomposed when the reaction was conducted for 120 min. The remarkable stability of this Fe/M-MnO2 catalyst in the reaction medium was confirmed by an iron leaching test and reuse experiments. Mechanism analysis revealed that the hydroxyl free radical was responsible for the removal of MB and catalyzed by M-MnO2 and Fe/M-MnO2. MB was transformed into small organic compounds and then further degraded into CO2 and H2O. The new insights obtained in this study will be beneficial for the practical applications of heterogeneous catalysts in wastewater treatments.

19.
Nat Commun ; 5: 5357, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25348348

ABSTRACT

Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors.

SELECTION OF CITATIONS
SEARCH DETAIL