Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters








Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979274

ABSTRACT

Within-individual coupling between measures of brain structure and function evolves in development and may underlie differential risk for neuropsychiatric disorders. Despite increasing interest in the development of structure-function relationships, rigorous methods to quantify and test individual differences in coupling remain nascent. In this article, we explore and address gaps in approaches for testing and spatially localizing individual differences in intermodal coupling. We propose a new method, called CIDeR, which is designed to simultaneously perform hypothesis testing in a way that limits false positive results and improve detection of true positive results. Through a comparison across different approaches to testing individual differences in intermodal coupling, we delineate subtle differences in the hypotheses they test, which may ultimately lead researchers to arrive at different results. Finally, we illustrate the utility of CIDeR in two applications to brain development using data from the Philadelphia Neurodevelopmental Cohort.

2.
Vaccines (Basel) ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38793795

ABSTRACT

Background:Streptococcus suis (S. suis) is a Gram-positive bacterium that causes substantial disease in pigs. S. suis is also an emerging zoonoses in humans, primarily in Asia, through the consumption of undercooked pork and the handling of infected pig meat as well as carcasses. The complexity of S. suis epidemiology, characterized by the presence of multiple bacterial serotypes and strains with diverse sequence types, identifies a critical need for a universal vaccine with the ability to confer cross-protective immunity. Highly conserved immunogenic proteins are generally considered good candidate antigens for subunit universal vaccines. Methods: In this study, the cross-protection of the sugar ABC transporter substrate-binding protein (S-ABC), a surface-associated immunogenic protein of S. suis, was examined in mice for evaluation as a universal vaccine candidate. Results: S-ABC was shown to be highly conserved, with 97% amino acid sequence identity across 31 S. suis strains deposited in GenBank. Recombinantly expressed S-ABC (rS-ABC) was recognized via rabbit sera specific to S. suis serotype 2. The immunization of mice with rS-ABC induced antigen-specific antibody responses, as well as IFN-γ and IL-4, in multiple organs, including the lungs. rS-ABC immunization conferred high (87.5% and 100%) protection against challenges with S. suis serotypes 2 and 9, demonstrating high cross-protection against these serotypes. Protection, albeit lower (50%), was also observed in mice challenged with S. suis serotype 7. Conclusions: These data identify S-ABC as a promising antigenic target within a universal subunit vaccine against S. suis.

3.
bioRxiv ; 2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37131799

ABSTRACT

Clusterwise inference is a popular approach in neuroimaging to increase sensitivity, but most existing methods are currently restricted to the General Linear Model (GLM) for testing mean parameters. Statistical methods for testing variance components, which are critical in neuroimaging studies that involve estimation of narrow-sense heritability or test-retest reliability, are underdeveloped due to methodological and computational challenges, which would potentially lead to low power. We propose a fast and powerful test for variance components called CLEAN-V (CLEAN for testing Variance components). CLEAN-V models the global spatial dependence structure of imaging data and computes a locally powerful variance component test statistic by data-adaptively pooling neighborhood information. Correction for multiple comparisons is achieved by permutations to control family-wise error rate (FWER). Through analysis of task-fMRI data from the Human Connectome Project across five tasks and comprehensive data-driven simulations, we show that CLEAN-V outperforms existing methods in detecting test-retest reliability and narrow-sense heritability with significantly improved power, with the detected areas aligning with activation maps. The computational efficiency of CLEAN-V also speaks of its practical utility, and it is available as an R package.

4.
Vet Sci ; 10(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36669049

ABSTRACT

Streptococcus suis is a significant pathogen in pigs and a newly emerging zoonotic agent in humans. The presence of multiple serotypes and strains with diversified sequence types in pig herds highlights the need for the identification of broadly cross-reactive universal vaccine antigen targets, capable of providing cross-protection against S. suis infection. Subunit vaccines based on the conserved proteins shared between different S. suis serotypes are potential candidates for such a universally protective vaccine. In the present study, phosphate ABC transporter ATP-binding protein PstB (PstB), an immunogenic protein of the S. suis bacterium, was expressed and purified, and then subjected to cross-protection evaluation in mice. The PstB protein showed nearly 100% amino acid similarity across a panel of 31 S. suis isolates representing different serotypes, which were collected from different countries. A recombinant PstB (rPstB) protein (S. suis serotype 2) was recognized by rabbit sera specific to this serotype, and induced high levels of IFN-γ and IL-4 in mice immunized with the recombinant protein. These cytokines are considered important for protection against S. suis infection. Immunization of mice with rPstB resulted in an 87.5% protection against challenge with S. suis serotype 2 and 9 strains, suggesting a high level of cross-protection for S. suis serotypes 2 and 9. A lower protection rate (62.5%) was observed in mice challenged with the S. suis serotype 7 strain. These data demonstrate that PstB is a promising target antigen for development as a component of a universal subunit vaccine against multiple S. suis serotypes.

5.
Molecules ; 27(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35208972

ABSTRACT

Three new polyhydroxylated oleanane triterpenoids, cissatriterpenoid A-C (1-3), along with one known analogue (4), were isolated from the whole plant of Cissampelos pareira var. hirsuta. Their chemical structures were elucidated by extensive spectroscopic data (IR, HR-ESI-MS, 1H-NMR, 13C-NMR, DEPT, 1H-1H COSY, HSQC, HMBC, NOESY) and the microhydrolysis method. The isolation of compounds 1-4 represents the first report of polyhydroxylated oleanane triterpenoids from the family Menispermaceae. All isolated compounds were evaluated for their cytotoxicity against five human cancer cell lines, and the inhibitory activity against NO release in LPS-induced RAW 264.7 cells. Compound 3 showed the most potent cytotoxic activities against the A549, SMMC-7721, MCF-7, and SW480 cell lines, with IC50 values of 17.55, 34.74, 19.77, and 30.39 µM, respectively, whereas three remaining ones were found to be inactive. The preliminary structure-activity relationship analysis indicated that the γ-lactone ring at C-22 and C-29, and the olefinic bond at C-12 and C-13 were structurally required for the cytotoxicity of polyhydroxylated oleanane triterpenoids against these four cell lines. Based on lipid-water partition coefficients, compound 3 is less lipophilic than 1 and 4, which agrees with their cytotoxic activities. This confirms the potential of C. pareira var. hirsuta in the tumor treatment.


Subject(s)
Antineoplastic Agents, Phytogenic , Cissampelos/chemistry , Cytotoxins , Neoplasms/drug therapy , Oleanolic Acid , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Cytotoxins/chemistry , Cytotoxins/isolation & purification , Cytotoxins/pharmacology , Humans , MCF-7 Cells , Mice , Neoplasms/metabolism , Oleanolic Acid/chemistry , Oleanolic Acid/isolation & purification , Oleanolic Acid/pharmacology , RAW 264.7 Cells
6.
Microbiol Res ; 256: 126954, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34973546

ABSTRACT

Lactic acid bacteria that inhabit in the lung play important roles in maintaining the microbiome balance by interacting with the host immune system. Numerous metabolites (e.g., short chain fatty acids, bacteriocins, and hydrogen peroxide) produced by Lactobacillus sakei possess a special inhibitory spectrum against invading pathogens. In this research, the whole genome of L. sakei JD10 strain isolated from the porcine lung was sequenced and investigated. The whole size of the L. sakei JD10 chromosome was 1,989,921 bp, which encoded a total of 1951 predicted genes. Genome analyses revealed that many genes encoded carbohydrate-active enzymes (CAZymes) were predicted, which were responsible for the carbohydrate degradation and short chain fatty acids production. The metabolic profiles of short chain fatty acids in the L. sakei JD10 culture medium were measured by GC/TOFMS, and their regulatory effects on bacterial phagocytosis of RAW264.7 cells were also determined. The bacteriocin-producing genes of the L. sakei JD10 genome were also predicted, and a bacteriocin gene encoding carnocin was characterized and its molecular structure was analyzed. Two CRISPR-Cas system related genes were identified from the L. sakei JD10 genome, revealed that precise and efficient genome editing technologies could be applied for genetic engineering-manipulation. In all, investigation on the genomic features and metabolic features of L. sakei JD10 showed the potential probiotic traits to fight against pathogenic infection and regulate the host immune function.


Subject(s)
Bacteriocins , Latilactobacillus sakei , Probiotics , Animals , Bacteriocins/genetics , Genomics , Latilactobacillus sakei/genetics , Latilactobacillus sakei/metabolism , Swine
7.
J Vet Med Sci ; 83(12): 1952-1958, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34789595

ABSTRACT

Enterococcus faecium and E. faecalis are important human pathogens and also served as sentinel organisms for monitoring systems of antimicrobial resistance in both animals and humans. In this study, 106 E. faecium and 56 E. faecalis isolates were collected from 61 pig farms in 18 proveinces of China. Antimicrobial susceptibility was determined for 9 clinically important antibiotics and 3 antimicrobial growth promoters. The Enterococcus isolates showed high prevalence of resistance to medically important antibiotics, such as ampicillin (50.9% for E. faecium and 19.6% for E. faecalis), chloramphenicol (24.5% for E. faecium and 41.1% for E. faecalis), erythromycin (83.0% for E. faecium and 91.1% for E. faecalis), tetracycline (79.2% for E. faecium and 100% for E. faecalis), quinupristin/dalfopristin (26.4% for E. faecium) and ciprofloxacin (73.6% for E. faecium and 66.1% for E. faecalis). Resistance to tigecycline, linezolid and vancomycin was very rare. The resistance status of three representative in-feed antibiotics bacitracin, nosiheptide and enramycin was firstly investigated with Enterococcus as indicator bacteria. The Enterococcus isolates showed extremely high frequency of bacitracin resistance (96.7% for E. faecium and 87.8% for E. faecalis), while no nosiheptide and enramycin resistance was observed. Pulsed-field gel electrophoresis (PFGE) analysis showed that a majority of E. faecium and E. faecalis strains showed unrelated profiles, indicating high heterogeneity among the Enterococcus isolates. Our study provided basic data on the antimicrobial resistance of E. faecium and E. faecalis isolates.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Swine Diseases , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial , Enterococcus faecalis , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/veterinary , Microbial Sensitivity Tests/veterinary , Swine
8.
Vet Microbiol ; 254: 108983, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33486327

ABSTRACT

The aim of this study was to characterize a mcr-1-carrying integrative and conjugative element (ICE) in a novel Pasteurellaceae-like bacteria of swine origin. The mcr-1-positive GY-402 strain, recovered from a pig fecal sample, was subjected to whole genome sequencing with the combination of Illumina Hiseq and MinION platforms. Genome-based taxonomy revealed that strain GY-402 exhibited highest ANI value (84.89 %) to Actinobacillus succinogenes, which suggested that it represented a novel Actinobacillus species. Sequence analysis revealed that mcr-1 was clustered with eight other resistance genes in the MDR region of a novel ICE element, named ICEAsp1. Inverse PCR and mating assays showed that ICEAsp1 is active and transferrable. In addition, six circular forms mediated by four ISApl1 elements were detected with different inverse PCR sets, indicating that flexible composite transposons could be formed by pairwise combinations of multiple IS copies. Cloning experiment and phylogenetic analysis revealed that the novel Cat protein, designated CatT, belongs to type-A family and confers resistance to chloramphenicol. In conclusion, this is, to the best of our knowledge, the first report of mcr-1 gene on ICE structure and also in Pasteurellaceae bacteria. The diverse composite transposons mediated by multicopy IS elements may facilitate the dissemination of different resistance genes.


Subject(s)
Actinobacillus Infections/veterinary , Actinobacillus/drug effects , Actinobacillus/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Chloramphenicol Resistance/genetics , Chloramphenicol/pharmacology , Actinobacillus/isolation & purification , Actinobacillus Infections/microbiology , Animals , Bacterial Proteins/classification , Bacterial Proteins/isolation & purification , Conjugation, Genetic , DNA, Bacterial/genetics , Microbial Sensitivity Tests , Phylogeny , Swine/microbiology
9.
Mol Genet Genomics ; 296(1): 21-31, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32944788

ABSTRACT

The lungs possess an effective antimicrobial system and a strong ability to eliminate microorganisms in healthy organisms, and were once considered sterile. With the development of culture-independent sequencing technology, the richness and diversity of porcine lung microbiota have been gaining attention. In order to study the relationship between lung microbiota and porcine respiratory disease complex (PRDC), the lung microbiota in healthy and diseased swine bronchoalveolar lavage fluids were analyzed and compared using the Illumina MiSeq sequencing platform. The predominant microbial communities of healthy and diseased swine were similar at the phylum level, mainly composed of Proteobacteria, Firmicutes, Tenericutes, and Bacteroidetes. However, the bacterial taxonomic communities of healthy and diseased swine differed at the genus level. The higher relative abundances of Lactococcus, Enterococcus, Staphylococcus, and Lactobacillus genera in healthy swine might provide more benefits for lung health, while the enhanced richness of Streptococcus, Haemophilus, Pasteurella, and Bordetella genera in diseased swine might be closely related to pathogen invasion and the occurrence of respiratory disease. In conclusion, the observed differences in the richness and diversity of lung microbiota can provide novel insights into their relationship with PRDC. Analyses of swine lung microbiota communities might produce an effective strategy for the control and prevention of respiratory tract infections.


Subject(s)
DNA, Bacterial/genetics , Lung/microbiology , Microbiota/genetics , Respiratory Tract Infections/microbiology , Swine/microbiology , Animals , Bordetella/classification , Bordetella/genetics , Bordetella/isolation & purification , Bordetella/pathogenicity , Bronchoalveolar Lavage Fluid/microbiology , Enterococcus/classification , Enterococcus/genetics , Enterococcus/isolation & purification , Haemophilus/classification , Haemophilus/genetics , Haemophilus/isolation & purification , Haemophilus/pathogenicity , High-Throughput Nucleotide Sequencing , Lactobacillus/classification , Lactobacillus/genetics , Lactobacillus/isolation & purification , Lactococcus/classification , Lactococcus/genetics , Lactococcus/isolation & purification , Pasteurella/classification , Pasteurella/genetics , Pasteurella/isolation & purification , Pasteurella/pathogenicity , Phylogeny , RNA, Ribosomal, 16S/genetics , Staphylococcus/classification , Staphylococcus/genetics , Staphylococcus/isolation & purification , Streptococcus/classification , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL