Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters








Publication year range
1.
Sci Total Environ ; 950: 175233, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39102955

ABSTRACT

Accurate forecast of fine particulate matter (PM2.5) is crucial for city air pollution control, yet remains challenging due to the complex urban atmospheric chemical and physical processes. Recently deep learning has been routinely applied for better urban PM2.5 forecasts. However, their capacity to represent the spatiotemporal urban atmospheric processes remains underexplored, especially compared with traditional approaches such as chemistry-transport models (CTMs) and shallow statistical methods other than deep learning. Here we probe such urban-scale representation capacity of a spatiotemporal deep learning (STDL) model for 24-hour short-term PM2.5 forecasts at six urban stations in Rizhao, a coastal city in China. Compared with two operational CTMs and three statistical models, the STDL model shows its superiority with improvements in all five evaluation metrics, notably in root mean square error (RMSE) for forecasts at lead times within 12 h with reductions of 49.8 % and 47.8 % respectively. This demonstrates the STDL model's capacity to represent nonlinear small-scale phenomena such as street-level emissions and urban meteorology that are in general not well represented in either CTMs or shallow statistical models. This gain of small-scale representation in forecast performance decreases at increasing lead times, leading to similar RMSEs to the statistical methods (linear shallow representations) at about 12 h and to the CTMs (mesoscale representations) at 24 h. The STDL model performs especially well in winter, when complex urban physical and chemical processes dominate the frequent severe air pollution, and in moisture conditions fostering hygroscopic growth of particles. The DL-based PM2.5 forecasts align with observed trends under various humidity and wind conditions. Such investigation into the potential and limitations of deep learning representation for urban PM2.5 forecasting could hopefully inspire further fusion of distinct representations from CTMs and deep networks to break the conventional limits of short-term PM2.5 forecasts.

2.
Sci Total Environ ; 919: 170633, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340865

ABSTRACT

Biogenic and anthropogenic organic vapors are crucial precursors of ozone and secondary organic aerosol (SOA) in the atmosphere. Here we conducted real-time measurements of gaseous organic compounds using a Vocus proton-transfer-reaction mass spectrometer (Vocus PTR-MS) at the Shanghuang mountain site (1128 m a.s.l.) in southeastern China during November 2022. Our results revealed a substantial impact of mixed biogenic and anthropogenic compounds at the mountain site, with oxygenated volatile organic compounds (OVOCs) comprising 74 % of the organic vapors. Two distinct periods, characterized by sunny days (P1) and persistent cloud events (P2), were observed. P1 exhibited higher concentrations of biogenic-related emissions compared to P2. For instance, isoprene, monoterpenes, and sesquiterpenes during P1 were 2.4-2.9 times higher than those during P2. OVOCs such as acetaldehyde, MVK + MACR, acetone, and MEK also showed higher concentrations during P1, indicating a dominant source from the photochemical oxidation of biogenic VOCs. Anthropogenic-related VOCs like benzene and toluene had higher concentrations during P2, displaying different diurnal cycles compared to P1. Our analysis identified four biogenic-related factors dominated by isoprene and sesquiterpene oxidation products, and two anthropogenic-related factors. During P1, biogenic sources contributed approximately 80 % to total organic compounds, while during P2, anthropogenic sources, particularly the aromatic-related factor, increased from 16 % to 35 %. Furthermore, a unique factor characterized by C2 amines and C3 amides and periodic plumes indicated the influence of industrial emissions from regional transport. The study highlights the significant variations in sources and compositions of gaseous organic compounds at regional mountain sites due to changes in meteorology and photochemical processing, potentially impacting regional ozone and SOA formation.

3.
J Environ Sci (China) ; 138: 516-530, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135417

ABSTRACT

On-line chemical characterization of atmospheric particulate matter (PM) with soft ionization technique and ultrahigh-resolution Mass Spectrometry (UHRMS) provides molecular information of organic constituents in real time. Here we describe the development and application of an automatic measurement system that incorporates PM2.5 sampling, thermal desorption, atmospheric pressure photoionization, and UHRMS analysis. Molecular formulas of detected organic compounds were deducted from the accurate (±10 ppm) molecular weights obtained at a mass resolution of 100,000, allowing the identification of small organic compounds in PM2.5. Detection efficiencies of 28 standard compounds were determined and we found a high sensitivity and selectivity towards organic amines with limits of detection below 10 pg. As a proof of principle, PM2.5 samples collected off-line in winter in the urban area of Beijing were analyzed using the Ionization Module and HRMS of the system. The automatic system was then applied to conduct on-line measurements during the summer time at a time resolution of 2 hr. The detected organic compounds comprised mainly CHON and CHN compounds below 350 m/z. Pronounced seasonal variations in elemental composition were observed with shorter carbon backbones and higher O/C ratios in summer than that in winter. This result is consistent with stronger photochemical reactions and thus a higher oxidation state of organics in summer. Diurnal variation in signal intensity of each formula provides crucial information to reveal its source and formation pathway. In summary, the automatic measurement system serves as an important tool for the on-line characterization and identification of organic species in PM2.5.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Mass Spectrometry , Atmospheric Pressure , Aerosols/analysis , Amines , Environmental Monitoring/methods
4.
J Environ Sci (China) ; 138: 607-625, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135424

ABSTRACT

In recent years, many cities have taken measures to reduce volatile organic compounds (VOCs), an important precursor of ozone (O3), to alleviate O3 pollution in China. 116 VOC species were measured by online and offline methods in the urban area of Jiaozuo from May to October in 2021 to analyze the compositional characteristics. VOC sources were analyzed by a positive matrix factorization (PMF) model, and the sensitivity of ozone generation was determined by ozone isopleth plotting research (OZIPR) simulation. The results showed that the average volume concentration of total VOCs was 30.54 ppbv and showed a bimodal feature due to the rush-hour traffic in the morning and at nightfall. The most dominant VOC groups were oxygenated VOCs (OVOCs, 29.3%) and alkanes (26.7%), and the most abundant VOC species were acetone and acetylene. However, based on the maximum incremental reactivity (MIR) method, the major VOC groups in terms of ozone formation potential (OFP) contribution were OVOCs (68.09 µg/m3, 31.5%), aromatics (62.90 µg/m3, 29.1%) and alkene/alkynes (54.90 µg/m3, 25.4%). This indicates that the control of OVOCs, aromatics and alkene/alkynes should take priority. Five sources of VOCs were quantified by PMF, including fixed sources of fossil fuel combustion (27.8%), industrial processes (25.9%), vehicle exhaust (19.7%), natural and secondary formation (13.9%) and solvent usage (12.7%). The empirical kinetic modeling approach (EKMA) curve obtained by OZIPR on O3 exceedance days indicated that the O3 sensitivity varied in different months. The results provide theoretical support for O3 pollution prevention and control in Jiaozuo.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Ozone/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring/methods , China , Alkenes , Alkynes
5.
J Environ Sci (China) ; 138: 585-596, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135422

ABSTRACT

We developed a single-particle optical particle counter with polarization detection (SOPC) for the real-time measurement of the optical size and depolarization ratio (defined as the ratio of the vertical component to the parallel component of backward scattering) of atmospheric particles, the polarization ratio (DR) value can reflect the irregularity of the particles. The SOPC can detect aerosol particles with size larger than 500 nm and the maximum particle count rate reaches ∼1.8 × 105 particles per liter. The SOPC uses a modulated polarization laser to measure the optical size of particles according to forward scattering signal and the DR value of the particles by backward S and P signal components. The sampling rate of the SOPC was 106 #/(sec·channel), and all the raw data were processed online. The calibration curve was obtained by polystyrene latex spheres with sizes of 0.5-10 µm, and the average relative deviation of measurement was 3.96% for sub 3 µm particles. T-matrix method calculations showed that the DR value of backscatter light at 120° could describe the variations in the aspect ratio of particles in the above size range. We performed insitu observations for the evaluation of the SOPC, the mass concentration constructed by the SOPC showed good agreement with the PM2.5 measurements in a nearby state-controlled monitoring site. This instrument could provide useful data for source appointment and regulations against air pollution.


Subject(s)
Air Pollution , Environmental Monitoring , Environmental Monitoring/methods , Particle Size , Light , Microspheres
6.
J Environ Sci (China) ; 132: 31-42, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37336608

ABSTRACT

Black carbon (BC) aerosols in the atmosphere play a significant role in climate systems due to their strong ability to absorb solar radiation. The lifetime of BC depends on atmospheric transport, aging and consequently on wet scavenging processes (in-cloud and below-cloud scavenging). In this study, sequential rainwater samples in eight rainfall events collected in 2 mm interval were measured by a tandem system including a single particle soot photometer (SP2) and a nebulizer. The results showed that the volume-weighted average (VWA) mass concentrations of refractory black carbon (rBC) in each rainfall event varied, ranging from 10.8 to 78.9 µg/L. The highest rBC concentrations in the rainwater samples typically occurred in the first fraction from individual rainfall events. The geometric mean median mass-equivalent diameter (MMD) decreased under precipitation, indicating that rBC with larger sizes was relatively aged and preferentially removed by wet scavenging. A positive correlation (R2 = 0.73) between the VWA mass concentrations of rBC in rainwater and that in ambient air suggested the important contribution of scavenging process. Additionally, the contributions of in-cloud and below-cloud scavenging were distinguished and accounted for 74% and 26% to wet scavenging, respectively. The scavenging ratio of rBC particles was estimated to be 0.06 on average. This study provides helpful information for better understanding the mechanism of rBC wet scavenging and reducing the uncertainty of numerical simulations of the climate effects of rBC.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Beijing , Soot/analysis , Aerosols/analysis , Carbon , Environmental Monitoring/methods
7.
Environ Pollut ; 327: 121569, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37028792

ABSTRACT

To understand the source, formation, and seasonality of biogenic secondary organic aerosol (BSOA), a nine-stage cascade impactor was utilized to collect size-segregated particulate samples from April 2017 to January 2018 in Beijing, China. BSOA tracers derived from isoprene, monoterpene, and sesquiterpene were measured with gas chromatography-mass spectrometry. Isoprene and monoterpene SOA tracers exhibited significant seasonal variations, with a summer maximum and a winter minimum. Dominance of 2-methyltetrols (isoprene SOA tracers) with a good correlation with levoglucosan (a biomass burning tracer), which was combined with the detection of methyltartaric acids (possible indicators for aged isoprene) in summer, implies possible biomass burning and long-range transport. In contrast, sesquiterpene SOA tracer (ß-caryophyllinic acid) was dominant in winter and was probably associated with the local burning of biomass. Bimodal size distributions were observed for most isoprene SOA tracers, consistent with previous laboratory experiments and field studies showing that they can be formed not only in the aerosol phase but also in the gas phase. Monoterpene SOA tracers cis-pinonic acid and pinic acid showed a coarse-mode peak (5.8-9.0 µm) in four seasons due to their volatile nature. Sesquiterpene SOA tracer ß-caryophyllinic acid showed a unimodal pattern with a major fine-mode peak (1.1-2.1 µm), which is linked to local biomass burning. The tracer-yield method was used to quantify the contributions of isoprene, monoterpene, and sesquiterpene to secondary organic carbon (SOC) and SOA. The highest isoprene SOC and SOA concentrations occurred in summer (2.00 µgC m-3 and 4.93 µg m-3, respectively), contributing to 1.61% of OC and 5.22% of PM2.5, respectively. These results suggest that BSOA tracers are promising tracers for understanding the source, formation, and seasonality of BSOA.


Subject(s)
Air Pollutants , Sesquiterpenes , Air Pollutants/analysis , Beijing , Monoterpenes/analysis , Sesquiterpenes/analysis , Aerosols/analysis , Seasons , Particulate Matter/analysis , Environmental Monitoring/methods
8.
Sci Total Environ ; 841: 156638, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35709995

ABSTRACT

Strict emission controls were implemented in Beijing and the surrounding regions in the North China Plain to guarantee good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. Thus, the APEC period provides a good opportunity to study the sources and formation processes of atmospheric organic aerosol. Here, fine particles (PM2.5, particulate matter with a diameter of 2.5 µm or less) collected in urban Beijing before and during the APEC period were analyzed for molecular tracers of primary and secondary organic aerosol (SOA). The primary organic carbon (POC) and secondary organic carbon (SOC) were also reconstructed using a tracer-based method. The concentrations of biogenic SOA tracers ranged from 1.09 to 34.5 ng m-3 (mean 10.3 ± 8.51 ng m-3). Monoterpene oxidation products were the largest contributor to biogenic SOA, followed by isoprene- and sesquiterpene-derived SOA. The concentrations of biogenic SOA tracers decreased by 50 % during the APEC, which was largely attributed to the implementation of emission controls by the Chinese government. The increasing mass fractions of biogenic SOA tracers from isoprene and sesquiterpene during the pollution episodes implied that their photooxidation processes contributed to the poor air quality in urban Beijing. The reconstructed biogenic and anthropogenic SOC and POC concentrations were 89.6 ± 96.8 ng m-3, 570 ± 611 ng m-3, and 2.49 ± 2.08 µg m-3, respectively, accounting for 21.9 ± 11.4 % of OC in total. Biomass-burning derived OC was the largest contributor to carbonaceous aerosol over the North China Plain. By comparing the results before and during the APEC, the emission controls effectively mitigated about 34 % of the estimated OC and were more effective at reducing SOC than POC. This suggests that the reduction of the primary organic aerosol loading is harder than SOA over the North China Plain.


Subject(s)
Air Pollutants , Sesquiterpenes , Aerosols/analysis , Air Pollutants/analysis , Beijing , Carbon/analysis , China , Environmental Monitoring/methods , Particulate Matter/analysis , Seasons
9.
Environ Sci Technol ; 56(12): 7588-7597, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35544717

ABSTRACT

Online detection of bioaerosols based on the light-induced fluorescence (LIF) technique is still challenging due to the complexity of bioaerosols and the external/internal mixing with nonbiological fluorescent compositions. Although many lab studies have measured the fluorescence properties of the biological and nonbiological materials, there is still a scarcity of knowledge of the sources of fluorescent aerosol particles (FAP) in the ambient atmosphere. Here, we fill this gap by combining the online measurement of an LIF-based instrument (wideband integrated bioaerosol sensor, WIBS, 0.8-20 µm) with the measurements of typical biological matter and the compositions related to major nonbiological FAP from May to July in the megacity Beijing. We find that fungal spores and pollen are widely observed in all types of FAP using a WIBS. Bacteria are suggested to be associated with the fine mode FAP (excitation/emission: 280 nm/310-400 nm; 0.8-3 µm). The FL-B and -BC particles (emission in 420-650 nm) contributing the most to FAP are strongly associated with humic-like substances, dust, burning and combustion emissions, and secondary organic aerosols (SOA). This study provides a guide for interpreting individual FAP measured by LIF instruments and points to the applicability of online LIF instruments to characterize nonbiological compositions including SOA.


Subject(s)
Air Pollutants , Environmental Monitoring , Aerosols/analysis , Air Pollutants/analysis , Atmosphere , Bacteria , Environmental Monitoring/methods , Particulate Matter/analysis , Pollen/chemistry
10.
Sci Total Environ ; 838(Pt 2): 155971, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35597348

ABSTRACT

With the implementation of clean coal policy in China, the chunk coal has been gradually replaced by honeycomb briquette in domestic energies. In this study, the molecular composition of fine particles (PM2.5) from chunk coal and honeycomb briquette combustion is characterized using the Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). More than 6000 molecular formulae were detected in each PM2.5 sample. A remarkable decrease in unsaturation and aromatic compounds was found from chunk coal to honeycomb briquette derived aerosols. Around 73.6% of the unique CHON compounds in chunk coal are considered to have aromatic structures, while it decreased to 7.3% in honeycomb briquette. Most of these nitroaromatics detected only in chunk coal are highly carcinogenic and mutagenic with 4-6 rings. Moreover, the aromatic compounds in sulfur-containing compounds also showed a significant decrease. Meanwhile, because of the perforated shape and the additives added during the production of honeycomb briquettes, there are more heteroatoms-containing molecules released from honeycomb briquette combustion, which are highly functional compounds with high molecular weight, high degree of oxidation, and low volatility. Our results provide molecular level evidence that the transformation from chunk coal to honeycomb briquette can effectively reduce the emission of aromatic compounds, which is beneficial to assessing and reducing the impacts to climate change as well as human health.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Aerosols/analysis , Air Pollutants/analysis , China , Coal/analysis , Humans , Organic Chemicals/analysis , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis
11.
Adv Atmos Sci ; 39(10): 1608-1622, 2022.
Article in English | MEDLINE | ID: mdl-35400782

ABSTRACT

The attainment of suitable ambient air quality standards is a matter of great concern for successfully hosting the XXIV Olympic Winter Games (OWG). Transport patterns and potential sources of pollutants in Zhangjiakou (ZJK) were investigated using pollutant monitoring datasets and a dispersion model. The PM2.5 concentration during February in ZJK has increased slightly (28%) from 2018 to 2021, mostly owing to the shift of main potential source regions of west-central Inner Mongolia and Mongolian areas (2015-18) to the North China Plain and northern Shanxi Province (NCPS) after 2018. Using CO as an indicator, the relative contributions of the different regions to the receptor site (ZJK) were evaluated based on the source-receptor-relationship method (SRR) and an emission inventory. We found that the relative contribution of pollutants from NCPS increased from 33% to 68% during 2019-21. Central Inner Mongolia (CIM) also has an important impact on ZJK under unfavorable weather conditions. This study demonstrated that the effect of pollution control measures in the NCPS and CIM should be strengthened to ensure that the air quality meets the standard during the XXIV OWG.

12.
J Environ Sci (China) ; 114: 514-525, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35459513

ABSTRACT

Spatiotemporal variations of ozone (O3) taken from the Copernicus Atmosphere Monitoring Service (CAMS) and the second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) were intercompared and evaluated with ground and ozone-sonde observations over China in 2018 and 2019. Intercomparison of the surface ozone from CAMS and MERRA-2 reanalysis showed significant negative bias (CAMS minus MERRA-2, same below) at Tibetan Plateau of up to 80 µg/m3, and the average R2 was about 0.6 across China. Evaluated with the ground observations from China National Environmental Monitoring Center (CNEMC), we found that CAMS and MERRA-2 reanalysis were capable of capturing the key patterns of monthly and diurnal variations of surface ozone over China except for the western region, and MERRA-2 overestimated the observations compared to CAMS. Vertically, the CAMS profiles overestimated the ozone-sonde from the World Ozone and Ultraviolet Radiation Data Center (WOUDC) above 200 hPa with the magnitude reaching up to 150 µg/m3, while little bias was found between the reanalysis and observations below 200 hPa. Intercomparison drawn from the vertical distribution between CAMS and MERRA-2 reanalysis showed that the negative bias appeared throughout the troposphere over China, while the positive bias emerged in the upper troposphere and lower stratosphere (UTLS) with high order of magnitude exceeding 100 µg/m3, indicating large uncertainties at higher altitudes. In summary, we concluded that CAMS reanalysis showed better agreement with the observations in contrast to MERRA-2, and the large discrepancy especially at higher altitudes between these two reanalysis datasets could not be ignored.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/analysis , Atmosphere , China , Environmental Monitoring , Ozone/analysis , Retrospective Studies , Ultraviolet Rays
13.
Environ Res ; 211: 113093, 2022 08.
Article in English | MEDLINE | ID: mdl-35292245

ABSTRACT

Hydroxymethanesulfonate (HMS), a key marker species of aqueous-phase processing, plays a significant role in sulfur budget in atmosphere. Here we have a comprehensive characterization of HMS at urban and rural sites in North China Plain (NCP) by using the real-time measurements from a high-resolution aerosol mass spectrometer (AMS) and a single-particle AMS together with offline filter analysis. Our results showed much higher winter concentration of HMS at the rural site (average±1σ: 2.58 ± 2.56 µg m-3) than that (1.70 ± 2.68 µg m-3) in Beijing due to the more frequent fog events, low particle acidity and high concentration of precursors. The HMS on average contributed 6.3% and 5.2% to organic aerosol (OA), and 16% and 12% to the total particulate sulfur, at the rural and urban sites, respectively. HMS was highly correlated with aqueous-phase secondary OA and sulfate, and its contribution to the total particulate sulfur increased significantly as a function of relative humidity demonstrating the effective HMS production from aqueous-phase processing. Single-particle analysis showed that HMS-containing particles were mainly mixed with amine-related compounds. In addition, we found that organosulfur compounds (OS) estimated from sulfur-containing fragments of AMS correlated well with HMS at both urban and rural sites. While OS at the rural site was dominated by HMS, other types of OS were also important in urban area. The high HMS also affected the estimation of particle acidity using the AMS measured and predicted ammonium, particularly during severe haze episodes. Overall, our results demonstrated the importance of HMS in winter in NCP, and it could be more important in total particulate sulfur budget as the continuous decrease in sulfate in the future.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , China , Dust/analysis , Environmental Monitoring , Particulate Matter/analysis , Sulfates , Sulfur/analysis , Water/analysis
14.
Huan Jing Ke Xue ; 43(2): 714-722, 2022 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-35075845

ABSTRACT

GC-SAW was used to carry out online sampling analysis of the main business sources, residential sources, and roads in Rizhao City from August 22 to 29 in 2020. The spatial distribution characteristics of various volatile organic compounds (VOCs) in the atmosphere were obtained, and the chemical reactivity of the main components was studied. The results showed that the VOCs with carbon atoms greater than 5 (VOCC>5) were mainly toluene propylbenzene and n-octane, and the spatial distribution was significant; the average ρ(TVOCC>5) in the port area, downtown area, and industrial area were 80.5, 115.3, and 118.1 µg·m-3, respectively. Combined with road traffic impact and industrial production emissions, the maximum ρ(TVOCC>5) on the main roads in Rizhao City appeared near the Yingbin Road; the concentration value was 164.37 µg·m-3; the ρ(BTEX) in adhesive processing, painting, and glass factories reached 432.34, 1010.84, and 1989.85 µg·m-3, respectively. The chemical reactivity analysis of the main components of VOCC>5 showed that BTEX and n-octane were the important active components of ozone formation in Rizhao City.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Cities , Environmental Monitoring , Ozone/analysis , Volatile Organic Compounds/analysis
15.
Sci Total Environ ; 821: 153383, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35085635

ABSTRACT

Secondary inorganic aerosols (SIA) account for 20-60% of the total fine particulates in the Beijing-Tianjin-Hebei (BTH) region of China, indicating an urgent need to clarify the relationship among such compounds. The purpose of this study was to quantify the relationship between emissions of NH3, NOx, SO2, VOCs and SIA concentrations during a severe winter haze episode using an air quality model and a meteorology-based redistributed NH3 emission inventory within the BTH region. The results showed that the model performance regarding the NH3 simulations in January by the four emission inventories improved after the redistribution of daily NH3 emissions, with an increase of 0.02-0.13 in R, a 9-56% decrease in NMB, and a 7-51% decrease in NME. The updated simulations reproduced the daily observations of SIA, SO2, and NO2 well. A total of 125 sets of sensitivity simulations showed that a synergistic reduction in NH3 and VOCs was more efficient in terms of SIA control than simply reducing SO2 or NOx in the BTH region. If only NOx emissions were reduced, the SIA concentration would first increase and then decrease, and it could decline by another 0.86-8.03% in parallel with an equal NH3 emission cut. SIA could be reduced by approximately 22.68% with the most stringent inorganic precursors' control. Moreover, VOCs emission reductions could lead to a decrease in SIA, and the impact of VOCs on SIA was similar to that of NH3. The collaborative control of both inorganic precursors and VOCs was more effective than single-factor control measures for decreasing SIA, and the decline rate was approximately 29.26% under minimum emission conditions. This improved effectiveness was obtained because VOCs mitigation effectively decreases the ozone concentration, which in turn influences SIA formation. Finally, on the premise of a 60% SO2 cut, the reduction scheme NH3:VOCs:NOx = 4:4:1 was suggested for SIA control.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Aerosols , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Beijing , China , Environmental Monitoring , Meteorology , Ozone/analysis , Particulate Matter/analysis
16.
J Environ Sci (China) ; 115: 465-473, 2022 May.
Article in English | MEDLINE | ID: mdl-34969474

ABSTRACT

Cross-boundary transport of air pollution is a difficult issue in pollution control for the North China Plain. In this study, an industrial district (Shahe City) with a large glass manufacturing sector was investigated to clarify the relative contribution of fine particulate matter (PM2.5) to the city's high levels of pollution. The Nest Air Quality Prediction Model System (NAQPMS), paired with Weather Research and Forecasting (WRF), was adopted and applied with a spatial resolution of 5 km. During the study period, the mean mass concentrations of PM2.5, SO2, and NO2 were observed to be 132.0, 76.1, and 55.5 µg/m3, respectively. The model reproduced the variations in pollutant concentrations in Shahe at an acceptable level. The simulation of online source-tagging revealed that pollutants emitted within a 50-km radius of downtown Shahe contributed 63.4% of the city's total PM2.5 concentration. This contribution increased to 73.9±21.2% when unfavorable meteorological conditions (high relative humidity, weak wind, and low planetary boundary layer height) were present; such conditions are more frequently associated with severe pollution (PM2.5 ≥ 250 µg/m3). The contribution from Shahe was 52.3±21.6%. The source apportionment results showed that industry (47%), transportation (10%), power (17%), and residential (26%) sectors were the most important sources of PM2.5 in Shahe. The glass factories (where chimney stack heights were normally < 70 m) in Shahe contributed 32.1% of the total PM2.5 concentration in Shahe. With an increase in PM2.5 concentration, the emissions from glass factories accumulated vertically and narrowed horizontally. At times when pollution levels were severe, the horizontally influenced area mainly covered Shahe. Furthermore, sensitivity tests indicated that reducing emissions by 20%, 40%, and 60% could lead to a decrease in the mass concentration of PM2.5 of of 12.0%, 23.8%, and 35.5%, respectively.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Environmental Monitoring , Particulate Matter/analysis , Seasons
17.
Sci Total Environ ; 806(Pt 4): 150951, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34656590

ABSTRACT

It is very important for air pollution prevention and control to accurately quantify atmospheric environment capacity (AEC) in the planetary boundary layer (PBL). This study developed a high temporal-resolution dynamic multi-box algorithm to estimate PM2.5 AEC with a PBL ceilometer and Doppler wind profile lidar in Beijing City. Compared with the traditional A-value method, two primary improvements are introducing the time coefficient and vertical multi-box assumption into the original box model. The algorithm can accurately calculate the PM2.5 AEC under different circulation patterns and predict the short-time dynamic change of AEC. The results show that the time coefficient effectively reduced the estimation errors when the initial PM2.5 concentration, horizontal wind speed and PBL heights change greatly with time, such situation is consistent with most circulation patterns. And the improvement of multi-box model is much more remarkable when the PM2.5 concentration and horizontal wind change greatly in the vertical direction, such as A, NE and W type circulations. The ideal AEC under polluted circulation patterns won't increase infinitely with wind speed and PBL height, generally less than 30 t/h. The horizontal advection has a much greater effect on expanding the capacity of PM2.5 than the vertical diffusion under clean circulation patterns, and the maximum value of ideal AEC can reach 50 t/h. The positive residual AEC under clean circulations indicates surplus capacity for PM2.5 because of vigorous turbulences, while weak diffusion and ventilation conditions under polluted circulations lead to negative residual AEC and insufficient capacity of atmosphere.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Algorithms , China , Environmental Monitoring , Particulate Matter/analysis , Seasons
18.
Environ Pollut ; 292(Pt B): 118407, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34715272

ABSTRACT

Benefiting from the pollution controls implemented by the Chinese government, the concentrations of PM2.5, SO2, NO2 and CO showed a significant decrease in Beijing during 2013-2017. In this study, an observation-based method was employed to estimate the relative contributions of regional transport (MaxRTC) and local emissions (MinLEC) to air pollutant levels during 2013-2017 in Beijing. The results showed that the MaxRTC to SO2 and PM2.5 increased significantly over the five years, while those to CO and NO2 changed little. Furthermore, the difference in the emissions control efficiency (ΔECE) between Beijing (receptor region) and Shijiazhuang (source region), which refers to the concentration changes corresponding to unit emission changes of a certain air pollutant between the two regions, was introduced to verify the estimated variation in MaxRTC and MinLEC over 2013-2017. The negative value of ΔECE found for PM2.5 and SO2 supports the conclusion of an increasing effect of regional transport. This implies that local emissions control alone is not adequate for mitigating Beijing's air pollution, especially with the demand for continuously improving air quality. Joint prevention and control with regard to air quality on a regional scale is more important and urgent in the next Five-Year Plan.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Environmental Monitoring , Particulate Matter/analysis
19.
Sci Total Environ ; 798: 149307, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34375256

ABSTRACT

Dust heterogeneous chemistry plays an important role in tropospheric chemistry, but its parameterization in numerical models is often quite simplified, which hampers accurate prediction of particulate matter and its chemical component. In this study, we investigate the evolution of dust heterogeneous chemical process and its potential impacts on gaseous and aerosol components during a dust pollution episode from March 27 to April 2, 2015 over North China. Based on field measurements, the significant role of relative humidity (RH) in dust heterogeneous chemistry is found and a RH-dependent parameterization for uptake coefficients of HNO3 and SO2 is incorporated in GEOS-Chem to reproduce the dust heterogeneous chemical process. During the study period, observed dust sulfate (DSO4) and dust nitrate (DNIT) exhibit maximum concentrations of 9.1 and 22.8 µg m-3 respectively, accompanied by high RH and gaseous precursor concentrations. DSO4 concentrations are positively related to RH. The observed dust sulfate oxidation ratio (DSOR) is elevated evidently with increased RH, especially when RH is higher than ~40%, implying that enhanced RH could promote heterogeneous oxidation of SO2 to DSO4. Model simulation shows that when incorporating the RH-dependent parameterization, DNIT and DSO4 are generally well captured and the model performance of total sulfate oxidation ratio (TSOR) and total nitrate oxidation ratio (TNOR) are improved. High contribution of DNIT and DSO4 are found to be located over the regions close to source areas (>60%) and downwind regions (>40%), respectively. Sensitivity results show that SO2 and HNO3 reduce by 2-24 µg m-3 and 1-18 µg m-3 when considering dust heterogeneous impacts, thus leading to reduction in non-dust sulfate and non-dust nitrate concentrations. As a result, simulated NH3 increases and ammonium reduces by more than 20%. Our study indicates that the contribution of heterogeneous reactions to sulfate formation is 20-30% over North China.


Subject(s)
Air Pollutants , Dust , Aerosols/analysis , Air Pollutants/analysis , China , Dust/analysis , Particulate Matter/analysis
20.
Sci Total Environ ; 770: 144821, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33736402

ABSTRACT

The light absorption black carbon (BC) and brown carbon (BrC) are two important sources of uncertainties in radiative forcing estimate. Here we investigated the light absorption enhancement (Eabs) of BC due to coated materials at an urban (Beijing) and a rural site (Gucheng) in North China Plain (NCP) in winter 2019 by using a photoacoustic extinctiometer coupled with a thermodenuder. Our results showed that the average (±1σ) Eabs was 1.32 (±0.15) at the rural site, which was slightly higher than that at the urban site (1.24 ± 0.15). The dependence of Eabs on coating materials was found to be relatively limited at both sites. However, Eabs presented considerable increases as a function of relative humidity below 70%. Further analysis showed that Eabs during non-heating period in Beijing was mainly caused by secondary components, while it was dominantly contributed by enhanced primary emissions in heating season at both sites. In particular, aerosol particles mixed with coal combustion emissions had a large impact on Eabs (>1.40), while the fresh traffic emissions and freshly oxidized secondary OA (SOA) had limited Eabs (1.00-1.23). Although highly aged or aqueous-phase processed SOA coated on BC showed the largest Eabs, their contributions to the bulk absorption enhancement were generally small. We also quantified the absorption of BrC and source contributions. The results showed the BrC absorption at the rural site was nearly twice that of urban site, yet absorption Ångström exponents were similar. Multiple linear regression analysis highlighted the major sources of BrC being coal combustion emissions and photochemical SOA at both sites with additional biomass burning at the rural site. Overall, our results demonstrated the relatively limited winter light absorption enhancement of BC in different chemical environments in NCP, which needs be considered in regional climate models to improve BC radiative forcing estimates.

SELECTION OF CITATIONS
SEARCH DETAIL