Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Encephalitis ; 4(1): 11-17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38195066

ABSTRACT

Purpose: Febrile seizures at a young age can provoke late-onset temporal lobe epilepsy. Since recent evidence has suggested that the gut microbiome affects central nervous system pathology across the blood-brain barrier, we hypothesized that febrile seizures alter the composition of the gut microbiome to provoke epilepsy. Methods: Third-generation C57BL/6 mice were separated into two groups (n = 5 each), and hot air was applied to only one group to cause febrile seizures. After two weeks of heat challenge, the fecal pellets acquired from each group were analyzed. Results: The gut microbiota of fecal pellets from each group revealed five taxa at the genus level and eight taxa at the species level that were significantly different in proportion between the groups. Conclusion: Although there was no significant difference in the overall diversity of the gut microbiota between the two groups, the identified heterogeneity may imply the pathognomonic causative relevance of febrile seizures and the development of epilepsy.

2.
Mol Neurobiol ; 61(2): 908-918, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37668963

ABSTRACT

We investigated circular RNA (circRNA) expression pattern from a rat intracerebral hemorrhage (ICH) model and tested therapeutic strategy. Hemorrhagic stroke was induced by stereotactic collagenase injection. Brain was harvested at 1, 3, and 7 days after ICH induction to study circRNA expression. Significantly altered circRNAs from microarray were examined by quantitative real-time polymerase chain reaction. Predicted target microRNA and nearby messenger RNA levels of significantly altered circRNAs were validated from previously published database. Therapeutic strategy based on potential target microRNA of significantly depressed circRNA was examined using in vitro and in vivo hemorrhagic model. Both significantly elevated/downregulated circRNA increased as time passed after ICH: 9, 159, and 704 circRNAs were significantly elevated, whereas 19, 276, and 656 circRNAs were significantly depressed at 1, 3 and 7 days after ICH induction, respectively, out of 13,298 studied circRNAs. The most elevated circRNAs were rno_circRNA_002714 and rno_circRNA_002715, which are located closely each other in chromosome 10, within exon sequence of glial fibrillary acidic protein. The most significantly downregulated circRNA was rno_circRNA_016465, which has several complementary sequences for miR-466b. The most commonly predicted microRNA response element of significantly depressed circRNAs was miR-466b. The antagonistic sequence against miR-466b significantly decreased neuronal cell death and improved neurological recovery in a hemorrhagic stroke model by upregulating insulin like growth factor receptors 1 and 2. This study illustrated dynamic circRNA expression pattern in a hemorrhagic stroke model, which correlated with microRNA and messenger RNA expression, suggesting the regulatory role of RNA dynamics in ICH.


Subject(s)
Hemorrhagic Stroke , MicroRNAs , Rats , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cerebral Hemorrhage/genetics
3.
Sci Rep ; 11(1): 21508, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728717

ABSTRACT

Seizure clustering is a common phenomenon in epilepsy. Protein expression profiles during a seizure cluster might reflect the pathomechanism underlying ictogenesis. We performed proteomic analyses to identify proteins with a specific temporal expression pattern in cluster phases and to demonstrate their potential pathomechanistic role. Pilocarpine epilepsy model mice with confirmed cluster pattern of spontaneous recurrent seizures by long-term video-electroencpehalography were sacrificed at the onset, peak, or end of a seizure cluster or in the seizure-free period. Proteomic analysis was performed in the hippocampus and the cortex. Differentially expressed proteins (DEPs) were identified and classified according to their temporal expression pattern. Among the five hippocampal (HC)-DEP classes, HC-class 1 (66 DEPs) represented disrupted cell homeostasis due to clustered seizures, HC-class 2 (63 DEPs) cluster-onset downregulated processes, HC-class 3 (42 DEPs) cluster-onset upregulated processes, and HC-class 4 (103 DEPs) consequences of clustered seizures. Especially, DEPs in HC-class 3 were hippocampus-specific and involved in axonogenesis, synaptic vesicle assembly, and neuronal projection, indicating their pathomechanistic roles in ictogenesis. Key proteins in HC-class 3 were highly interconnected and abundantly involved in those biological processes. This study described the seizure cluster-associated spatiotemporal regulation of protein expression. HC-class 3 provides insights regarding ictogenesis-related processes.


Subject(s)
Cerebral Cortex/metabolism , Epilepsy/metabolism , Hippocampus/metabolism , Pilocarpine/toxicity , Proteome/metabolism , Seizures/metabolism , Animals , Cerebral Cortex/pathology , Cluster Analysis , Disease Models, Animal , Epilepsy/chemically induced , Epilepsy/complications , Epilepsy/pathology , Hippocampus/pathology , Male , Mice , Mice, Inbred C57BL , Muscarinic Agonists/toxicity , Proteome/analysis , Seizures/etiology , Seizures/pathology
4.
Materials (Basel) ; 14(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800277

ABSTRACT

Lithium-ion batteries (LIBs) are widely used as energy storage systems. With the growing interest in electric vehicles, battery performance related to traveling distance has become more important. Therefore, there are various studies going on to achieve high-power and high-energy batteries. Laser structuring of electrodes involves a groove being produced on electrodes by a laser. This technique was used to show that battery performance can be enhanced due to improving Li-ion diffusion. However, there is a lack of studies about the morphological variation of grooves and process efficiency in laser parameters in the laser structuring of electrodes. In this study, the LiFePO4 cathode is structured by a nanosecond laser to analyze the morphological variation of grooves and process efficiency depending on laser fluence and the number of passes. First, the various morphologies of grooves are formed by a combination of fluences and the number of passes. At a fluence of 0.86 J/cm2 and three passes, the maximum aspect ratio of 1.58 is achieved and the surface area of structured electrodes is greater than that of unstructured electrodes. Secondly, three ablation phenomena observed after laser structuring are classified according to laser parameters through SEM images and EDX analysis. Finally, we analyze the amount of active material removal and process efficiency during laser structuring. In conclusion, applying low fluence and multi-pass is assumed to be advantageous for laser structuring of electrodes.

5.
Ann Neurol ; 89(4): 740-752, 2021 04.
Article in English | MEDLINE | ID: mdl-33415786

ABSTRACT

OBJECTIVE: Discovery of a novel antibody would enable diagnosis and early treatment of autoimmune encephalitis. The aim was to discover a novel antibody targeting a synaptic receptor and characterize the pathogenic mechanism. METHOD: We screened for unknown antibodies in serum and cerebrospinal fluid samples from autoimmune encephalitis patients. Samples with reactivity to rat brain sections and no reactivity to conventional antibody tests underwent further processing for antibody discovery, using immunoprecipitation to primary neuronal cells, mass-spectrometry analysis, an antigen-binding assay on an antigen-overexpressing cell line, and an electrophysiological assay with cultured hippocampal neurons. RESULTS: Two patients had a novel antibody against CaV α2δ (voltage-gated calcium channel alpha-2/delta subunit). The patient samples stained neuropils of the hippocampus, basal ganglia, and cortex in rat brain sections and bound to a CaV α2δ-overexpressing cell line. Knockdown of CaV α2δ expression in cultured neurons turned off the immunoreactivity of the antibody from the patients to the neurons. The patients were associated with preceding meningitis or neuroendocrine carcinoma and responded to immunotherapy. In cultured neurons, the antibody reduced neurotransmitter release from presynaptic nerve terminals by interfering with tight coupling of calcium channels and exocytosis. INTERPRETATION: Here, we discovered a novel autoimmune encephalitis associated with anti-CaV α2δ antibody. Further analysis of the antibody in autoimmune encephalitis might promote early diagnosis and treatment. ANN NEUROL 2021;89:740-752.


Subject(s)
Calcium Channels/immunology , Encephalitis/immunology , Hashimoto Disease/immunology , Adolescent , Aged , Animals , Antibodies/cerebrospinal fluid , Cells, Cultured , Cognition Disorders/etiology , Cognition Disorders/psychology , Encephalitis/diagnosis , Exocytosis , Female , Gene Knockdown Techniques , Hashimoto Disease/diagnosis , Hippocampus/immunology , Humans , Immunoprecipitation , Male , Neurons/immunology , Neuropil/immunology , Presynaptic Terminals/immunology , Rats
6.
Ann Clin Transl Neurol ; 6(10): 2014-2025, 2019 10.
Article in English | MEDLINE | ID: mdl-31557399

ABSTRACT

OBJECTIVE: We investigated the expression pattern of long noncoding RNAs (lncRNA) and messenger RNAs (mRNA) from two different intracerebral hemorrhage (ICH) rat models, and performed gene ontology and gene/protein interaction analyses. METHODS: We harvested hemorrhagic brain 1, 3, and 7 days after ICH induction by stereotactic collagenase injection. We performed microarray analyses with Agilent array platform to compare the expression of lncRNA and mRNAs from hemorrhagic and normal brains. The RNA expression patterns were also examined from the autologous blood injection ICH model at days 1 and 3, and significantly altered lncRNAs from two ICH models were validated by quantitative reverse transcriptase-polymerase chain reaction. Gene ontology analysis and pathway analysis were performed with differentially expressed mRNAs after ICH. Gene and protein interaction analysis was performed to elucidate the functional role of upregulated lncRNA in neuronal damage. RESULTS: Among the 13,661 lncRNAs studied, 83, 289, and 401 lncRNAs were significantly elevated after 1, 3, and 7 days after collagenase-induced ICH, respectively. NR_027324, or H19, was the most upregulated lncRNA after 1 day from the two ICH models and its elevation persisted until the 7th day. Gene ontology analysis revealed that immune-related biological processes such as immune response, immune system process, and defense response were upregulated from both ICH models. Gene and protein interaction study demonstrated that NR_027324 was closely related to the type I interferon signaling pathway. INTERPRETATION: This study illustrates the dynamic expression pattern of the lncRNA profile following ICH, and that H19 is the most consistently upregulated lncRNA after ICH.


Subject(s)
Cerebral Hemorrhage/metabolism , Corpus Striatum/metabolism , Gene Expression , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Animals , Disease Models, Animal , Gene Ontology , Male , Microbial Collagenase/pharmacology , Oligonucleotide Array Sequence Analysis , Rats , Rats, Sprague-Dawley , Up-Regulation
7.
Sci Rep ; 9(1): 11956, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31420566

ABSTRACT

As circular RNAs (circRNAs) regulates the effect of micro RNAs (miRNAs), circRNA-miRNA-mRNA network might be implicated in various disease pathogenesis. Therefore, we evaluated the dysregulated circRNAs in the Tg2576 mouse Alzheimer's disease (AD) model, their possible regulatory effects on downstream target mRNAs, and their pathomechanistic role during the disease progression. The microarray-based circRNA expression analysis at seven- and twelve-months of ages (7 M and 12 M) returned 101 dysregulated circRNAs at 7 M (55 up-regulated and 46 down-regulated) and twelve dysregulated circRNAs at 12 M (five up-regulated and seven down-regulated). For each dysregulated circRNA, potential target miRNAs and their downstream target mRNAs were searched. Dysregulation of circRNAs was associated with increased frequency of relevant dysregulation of their downstream target mRNAs. Those differentially expressed circRNA-miRNA-mRNA regulatory network included 2,275 networks (876 for up-regulated circRNAs and 1,399 for down-regulated circRNAs) at 7 M and 38 networks (25 for up-regulated circRNAs and 13 for down-regulated circRNAs) at 12 M. Gene ontology (GO) and pathway analyses demonstrated that the dysregulated mRNAs in those networks represent the AD pathomechanism at each disease stage. We concluded that the dysregulated circRNAs might involve in the AD pathogenesis by modulating disease relevant mRNAs via circRNA-miRNA-mRNA regulatory networks.


Subject(s)
Alzheimer Disease/metabolism , Gene Expression Regulation , RNA, Circular/biosynthesis , Alzheimer Disease/genetics , Animals , Disease Models, Animal , Mice , Mice, Transgenic , RNA, Circular/genetics
8.
PLoS One ; 13(12): e0209829, 2018.
Article in English | MEDLINE | ID: mdl-30592747

ABSTRACT

Circular RNAs (circRNAs) involve in the epigenetic regulation and its major mechanism is the sequestration of the target micro RNAs (miRNAs). We hypothesized that circRNAs might be related with the pathophysiology of chronic epilepsy and evaluated the altered circRNA expressions and their possible regulatory effects on their target miRNAs and mRNAs in a mouse epilepsy model. The circRNA expression profile in the hippocampus of the pilocarpine mice was analyzed and compared with control. The correlation between the expression of miRNA binding sites (miRNA response elements, MRE) in the dysregulated circRNAs and the expression of their target miRNAs was evaluated. As miRNAs also inhibit their target mRNAs, circRNA-miRNA-mRNA regulatory network, comprised of dysregulated RNAs that targets one another were searched. For the identified networks, bioinformatics analyses were performed. As the result, Forty-three circRNAs were dysregulated in the hippocampus (up-regulated, 26; down-regulated, 17). The change in the expression of MRE in those circRNAs negatively correlated with the change in the relevant target miRNA expression (r = -0.461, P<0.001), supporting that circRNAs inhibit their target miRNA. 333 dysregulated circRNA-miRNA-mRNA networks were identified. Gene ontology and pathway analyses demonstrated that the up-regulated mRNAs in those networks were closely related to the major processes in epilepsy. Among them, STRING analysis identified 37 key mRNAs with abundant (≥4) interactions with other dysregulated target mRNAs. The dysregulation of the circRNAs which had multiple interactions with key mRNAs were validated by PCR. We concluded that dysregulated circRNAs might have a pathophysiologic role in chronic epilepsy by regulating multiple disease relevant mRNAs via circRNA-miRNA-mRNA interactions.


Subject(s)
Epigenesis, Genetic/genetics , Epilepsy/genetics , RNA/genetics , Animals , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , RNA, Circular , RNA, Messenger/genetics
9.
Ann Clin Transl Neurol ; 5(10): 1264-1276, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30349861

ABSTRACT

OBJECTIVE: Maternal immune activation (MIA) is associated with an increased risk of autism spectrum disorder (ASD) in offspring. Herein, we investigate the altered expression of microRNAs (miRNA), and that of their target genes, in the brains of MIA mouse offspring. METHODS: To generate MIA model mice, pregnant mice were injected with polyriboinosinic:polyribocytidylic acid on embryonic day 12.5. We performed miRNA microarray and mRNA sequencing in order to determine the differential expression of miRNA and mRNA between MIA mice and controls, at 3 weeks of age. We further identified predicted target genes of dysregulated miRNAs, and miRNA-target interactions, based on the inverse correlation of their expression levels. RESULTS: Mice prenatally subjected to MIA exhibited behavioral abnormalities typical of ASD, such as a lack of preference for social novelty and reduced prepulse inhibition. We found 29 differentially expressed miRNAs (8 upregulated and 21 downregulated) and 758 differentially expressed mRNAs (542 upregulated and 216 downregulated) in MIA offspring compared to controls. Based on expression levels of the predicted target genes, 18 downregulated miRNAs (340 target genes) and three upregulated miRNAs (60 target genes) were found to be significantly enriched among the differentially expressed genes. miRNA and target gene interactions were most significant between mmu-miR-466i-3p and Hfm1 (ATP-dependent DNA helicase homolog), and between mmu-miR-877-3p and Aqp6 (aquaporin 6). INTERPRETATION: Our results provide novel information regarding miRNA expression changes and their putative targets in the early postnatal period of brain development. Further studies will be needed to evaluate potential pathogenic roles of the dysregulated miRNAs.

10.
Seizure ; 58: 110-119, 2018 May.
Article in English | MEDLINE | ID: mdl-29702408

ABSTRACT

PURPOSE: To perform comprehensive profiling of long non-coding RNAs (LncRNAs) in temporal lobe epilepsy. METHODS: We performed extensive profiling of LncRNAs and mRNAs in the mouse pilocarpine model in specific brain regions, the hippocampus and cortex, and compared the results to those of the control mouse. Differentially expressed LncRNAs and mRNAs were identified with a microarray analysis (Arraystar Mouse LncRNA Expression Microarray V3.0). Then, gene ontology (GO) and pathway analysis were performed to investigate the potential roles of the differentially expressed mRNAs in the pilocarpine model. Protein-protein interactions transcribed by dysregulated mRNAs with/without co-dysregulated LncRNAs were analyzed using STRING v10 (http://string-db.org/). RESULTS: A total of 22 and 83 LncRNAs were up- and down-regulated (≥2.0-fold, all P < .05), respectively, in the hippocampus of the epilepsy model, while 46 and 659 LncRNAs were up- and down-regulated, respectively, in the cortex of the epilepsy model. GO and pathway analysis revealed that the dysregulated mRNAs were closely associated with a process already known to be involved in epileptogenesis: acute inflammation, calcium ion regulation, extracellular matrix remodeling, and neuronal differentiation. Among the LncRNAs, we identified 10 LncRNAs commonly dysregulated with corresponding mRNAs in the cortex. The STRING analysis showed that the dysregulated mRNAs were interconnected around two centers: the mTOR pathway-related genes and REST pathway-related genes. CONCLUSION: LncRNAs were dysregulated in the pilocarpine mouse model according to the brain regions of the hippocampus and cortex. The dysregulated LncRNAs with co-dysregulated mRNAs might be possible therapeutic targets for the epigenetic regulation of chronic epilepsy.


Subject(s)
Cerebral Cortex/metabolism , Epilepsy, Temporal Lobe/metabolism , Hippocampus/metabolism , RNA, Long Noncoding/metabolism , Animals , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Male , Mice, Inbred C57BL , Microarray Analysis , Pilocarpine , RNA, Messenger/metabolism , Random Allocation , Repressor Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism
11.
Cell Med ; 9(3): 73-85, 2017.
Article in English | MEDLINE | ID: mdl-28713638

ABSTRACT

Cell-based therapy for intracerebral hemorrhage (ICH) has a great therapeutic potential. However, methods to effectively induce direct regeneration of the damaged neural tissue after cell transplantation have not been established, which, if done, would improve the efficacy of cell-based therapy. In this study, we aimed to develop a cell sheet with neurovasculogenic potential and evaluate its usefulness in a canine ICH model. We designed a composite cell sheet made of neural progenitors derived from human olfactory neuroepithelium and vascular progenitors from human adipose tissue-derived stromal cells. We also generated a physiologic canine ICH model by manually injecting and then infusing autologous blood under arterial pressure. We transplanted the sheet cells (cell sheet group) or saline (control group) at the cortex over the hematoma at subacute stages (2 weeks from ICH induction). At 4 weeks from the cell transplantation, cell survival, migration, and differentiation were evaluated. Hemispheric atrophy and neurobehavioral recovery were also compared between the groups. As a result, the cell sheet was rich in extracellular matrices and expressed neurotrophic factors as well as the markers for neuronal development. After transplantation, the cells successfully survived for 4 weeks, and a large portion of those migrated to the perihematomal site and differentiated into neurons and pericytes (20% and 30% of migrated stem cells, respectively). Transplantation of cell sheets alleviated hemorrhage-related hemispheric atrophy (p = 0.042) and showed tendency for improving functional recovery (p = 0.062). Therefore, we concluded that the cell sheet transplantation technique might induce direct regeneration of neural tissue and might improve outcomes of intracerebral hemorrhage.

12.
Mol Neurobiol ; 54(5): 3300-3308, 2017 07.
Article in English | MEDLINE | ID: mdl-27165289

ABSTRACT

Inhibitory synaptic receptors are dysfunctional in epileptic brains, and agents that selectively target these receptors may be effective for the treatment of epilepsy. MicroRNAs interfere with the translation of target genes, including various synaptic proteins. Here, we show that miR-203 regulates glycine receptor-ß (Glrb) in epilepsy models. miR-203 is upregulated in the hippocampus of epileptic mice and human epileptic brains and is predicted to target inhibitory synaptic receptors, including Glrb. In vitro transfection, target gene luciferase assays, and analysis of human samples confirmed the direct inhibition of GLRB by miR-203, and AM203, an antagomir targeting miR-203, reversed the effect of miR-203. When intranasal AM203 was administered, AM203 reached the brain and restored hippocampal GLRB levels in epileptic mice. Finally, intranasal AM203 reduced the epileptic seizure frequency of mice. Overall, this study suggests that GLRB expression in the epileptic brain is controlled by miR-203, and intranasal delivery of AM203 showed therapeutic effects in chronic epilepsy mice.


Subject(s)
MicroRNAs/metabolism , Seizures/genetics , Animals , Chronic Disease , Epilepsy/genetics , Epilepsy/pathology , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Protein Subunits/metabolism , Receptors, Glycine/metabolism , Recurrence , Up-Regulation/genetics
13.
J Neuropathol Exp Neurol ; 75(5): 455-63, 2016 May.
Article in English | MEDLINE | ID: mdl-27030743

ABSTRACT

Optimal models are needed to understand the pathophysiology of human cerebral aneurysms (CA). We investigated the development of experimental CA by decreasing the activity of lysyl oxidases by dietary copper deficiency from the time of gestation and then augmenting vascular stress by angiotensin II infusion in adulthood. Rats were fed copper-free, low-copper, or normal diets at different time periods from gestation to adulthood. The incidences of CAs were evaluated and autopsies performed to determine the coexistence of cardiovascular diseases. A copper-free diet from gestation was associated with high mortality rates (79.1%) resulting from rupture of ascending aorta aneurysms; a low-copper diet led to acceptable mortality rates (13.6%) and produced CAs and subarachnoid hemorrhage in 46.4% and 3.6% of animals, respectively. Higher proportions of CAs (up to 33.3%) in the rats primed for copper deficiency from gestation ruptured following angiotensin II infusion from adulthood. Gene expression array analyses of the CAs indicated that genes involving extracellular matrix and vascular remodeling were altered in this model. This model enables future research to understand the entire pathogenetic basis of CA development and rupture in association with systemic vasculopathies.


Subject(s)
Copper/administration & dosage , Copper/deficiency , Intracranial Aneurysm/chemically induced , Intracranial Aneurysm/pathology , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Animals , Animals, Newborn , Brain/drug effects , Brain/growth & development , Brain/metabolism , Female , Intracranial Aneurysm/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Sprague-Dawley
14.
J Nanosci Nanotechnol ; 15(2): 1683-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26353713

ABSTRACT

We have synthesized water-soluble polymer, poly[(9,9-bis((6'-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene))-alt-bisphenylfumaronitrile]dibromide (AHF-alt-PFN), the polymer typically obtained by the Suzuki type of polymerization reaction and shows good solubility in methanol. Bulk heterojunction polymer solar cells (BHJ-PSCs) fabricated by using water soluble conjugated polymer and positive (Cs+) and negative (F-, CO2-(3)) charge ions doping as an interfacial layer for poly(3-hexylthiophene):phenyl-C61 butyric acid methyl ester (P3HT:PCBM). We have achieved an enhancement of the short circuit density and power conversion efficiency in solar cell by introducing poly(AHF-alt-PFN) layer between the active layer and the cathode metal. The device with poly(AHF-alt-PRN) layer containing F-, CO2-(3) showed a short circuit current density more 1.3, 2.3 times higher than those of the device without poly(AHF-alt-PFN) + ion layer. We explain the better performance in solar cell with poly(AHF-alt-PFN) + ion layer was due not only to the increase of electron mobility in poly(AHF-alt-PFN) layer but also to the decrease of the electron barrier near cathode by the addition of the negative ions.

15.
Biochem Biophys Res Commun ; 462(4): 433-40, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-25976677

ABSTRACT

Genome-wide profiling has revealed that eukaryotic genomes are transcribed into numerous non-coding RNAs. In particular, long non-coding RNAs (lncRNAs) have been implicated in various human diseases due to their biochemical and functional diversity. Epileptic disorders have been characterized by dysregulation of epigenetic regulatory mechanisms, and recent studies have identified several lncRNAs involved in neural development and network function. However, comprehensive profiling of lncRNAs implicated in chronic epilepsy has been lacking. In this study, microarray analysis was performed to obtain the expression profile of lncRNAs dysregulated in pilocarpine and kainate models, two models of temporal lobe epilepsy commonly used for studying epileptic mechanisms. Total of 4622 lncRNAs were analyzed: 384 lncRNAs were significantly dysregulated in pilocarpine model, and 279 lncRNAs were significantly dysregulated in kainate model compared with control mice (≥3.0-fold, p < 0.05). Among these, 54 and 14 lncRNAs, respectively, had adjacent protein-coding genes whose expressions were also significantly dysregulated (≥2.0-fold, p < 0.05). Majority of these pairs of lncRNAs and adjacent genes shared the same direction of dysregulation. For the selected adjacent gene-lncRNA pairs, significant Gene Ontology terms were embryonic appendage morphogenesis and neuron differentiation. This was the first study to comprehensively identify dysregulated lncRNAs in two different models of chronic epilepsy and will likely provide a novel insight into developing lncRNA therapeutics.


Subject(s)
Epilepsy/genetics , RNA, Long Noncoding/genetics , Animals , Disease Models, Animal , Epilepsy/chemically induced , Mice , Pilocarpine/pharmacology
16.
J Alzheimers Dis ; 45(3): 837-49, 2015.
Article in English | MEDLINE | ID: mdl-25624420

ABSTRACT

With the recent advancement in transcriptome-wide profiling approach, numerous non-coding transcripts previously unknown have been identified. Among the non-coding transcripts, long non-coding RNAs (lncRNAs) have received increasing attention for their capacity to modulate transcriptional regulation. Although alterations in the expressions of non-coding RNAs have been studied in Alzheimer's disease (AD), most research focused on the involvement of microRNAs, and comprehensive expression profiling of lncRNAs in AD has been lacking. In this study, microarray analysis was performed to procure the expression profile of lncRNAs dysregulated in a triple transgenic model of AD (3xTg-AD). A total of 4,622 lncRNAs were analyzed: 205 lncRNAs were significantly dysregulated in 3xTg-AD compared with control mice, and 230 lncRNAs were significantly dysregulated within 3xTg-AD in an age-dependent manner (≥2.0-fold, p < 0.05). Among these, 27 and 15 lncRNAs, respectively, had adjacent protein-coding genes whose expressions were also significantly dysregulated. A majority of these lncRNAs and their adjacent genes shared the same direction of dysregulation. For these pairs of lncRNAs and adjacent genes, significant Gene Ontology terms were DNA-dependent regulation of transcription, transcription regulator activity, and embryonic organ morphogenesis. One of the most highly upregulated lncRNAs had a 395 bp core sequence that overlapped with multiple chromosomal regions. This is the first study that comprehensively identified dysregulated lncRNAs in 3xTg-AD mice and will likely facilitate the development of therapeutics targeting lncRNAs in AD.


Subject(s)
Alzheimer Disease/metabolism , Gene Expression Regulation/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Age Factors , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Gene Ontology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microarray Analysis , Mutation/genetics , Presenilin-1/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , tau Proteins/genetics
17.
Cell Transplant ; 24(8): 1469-79, 2015.
Article in English | MEDLINE | ID: mdl-24932854

ABSTRACT

Stem cell therapy is currently being studied with a view to rescuing various neurological diseases. Such studies require not only the discovery of potent candidate cells but also the development of methods that allow optimal delivery of those candidates to the brain tissues. Given that the blood-brain barrier (BBB) precludes cells from entering the brain, the present study was designed to test whether hyperosmolar mannitol securely opens the BBB and enhances intra-arterial cell delivery. A noninjured normal canine model in which the BBB was presumed to be closed was used to evaluate the feasibility and safety of the tested protocol. Autologous adipose tissue-derived pericytes with platelet-derived growth factor receptor ß positivity were utilized. Cells were administered 5 min after mannitol pretreatment using one of following techniques: (1) bolus injection of a concentrated suspension, (2) continuous infusion of a diluted suspension, or (3) bolus injection of a concentrated suspension that had been shaken by repeated syringe pumping. Animals administered a concentrated cell suspension without mannitol pretreatment served as a control group. Vital signs, blood parameters, neurologic status, and major artery patency were kept stable throughout the experiment and the 1-month posttreatment period. Although ischemic lesions were noted on magnetic resonance imaging in several mongrel dogs with concentrated cell suspension, the injection technique using repeated syringe shaking could avert this complication. The cells were detected in both ipsilateral and contralateral cortices and were more frequent at the ipsilateral and frontal locations, whereas very few cells were observed anywhere in the brain when mannitol was not preinjected. These data suggest that intra-arterial cell infusion with mannitol pretreatment is a feasible and safe therapeutic approach in stable brain diseases such as chronic stroke.


Subject(s)
Adipose Tissue/cytology , Blood-Brain Barrier/drug effects , Mannitol/pharmacology , Stem Cell Transplantation , Stem Cells/metabolism , Adipose Tissue/metabolism , Animals , Brain/diagnostic imaging , Brain/pathology , Dogs , Feasibility Studies , Injections, Intra-Arterial , Magnetic Resonance Imaging , Male , Models, Animal , Radiography , Receptor, Platelet-Derived Growth Factor beta/metabolism , Stem Cells/cytology , Transplantation, Autologous
18.
PLoS One ; 9(6): e97946, 2014.
Article in English | MEDLINE | ID: mdl-24959881

ABSTRACT

Intracerebral hemorrhage (ICH) is a devastating neurological disease with a grave prognosis. We evaluated microRNA (miRNA) expression after ICH and evaluated Let7c as a therapeutic target. We harvested hemorrhagic brain 24 hours after collagenase induced ICH in the rat. Microarray analysis was performed to compare the miRNAs expression pattern between hemorrhagic hemisphere and contralateral hemisphere. An in vitro thrombin toxicity model and blood injection ICH model were also used to evaluate miRNA expression. We selected miRNA for the therapeutic target study after reviewing target gene databases and their expression. The antagonistic sequence of the selected miRNA (antagomir) was used to evaluate its therapeutic potential in the in vitro thrombin toxicity and in vivo ICH models. Among 1,088 miRNAs analyzed, let7c was induced in the thrombin and ICH models. Let7c antagomir treatment increased cell survival in the in vitro thrombin injury model and improved neurological function at 4 weeks after ICH. Let7c antagomir decreased perihematoma edema, apoptotic cell death and inflammation around hematoma. Let7c antagomir also induced insulin like growth factor receptor 1 (IGF1R) protein and phosphorylated serine threonine kinase after ICH. This study shows a distinct miRNA expression pattern after ICH. The let7c antagomir reduced cell death and edema and enhanced neurological recovery at least in part by activating the IGF1R pro-survival pathway. This suggests blocking let7c might be a potential therapeutic target in ICH.


Subject(s)
Brain/pathology , Cerebral Hemorrhage/genetics , Hemostatics/toxicity , MicroRNAs/genetics , Oligonucleotides/pharmacology , Thrombin/toxicity , Animals , Brain/metabolism , Cell Line, Tumor , Cell Survival , Cerebral Hemorrhage/chemically induced , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/therapy , Collagenases/adverse effects , Disease Models, Animal , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Oligonucleotides/therapeutic use , Rats , Receptor, IGF Type 1/metabolism , Up-Regulation
19.
J Nanosci Nanotechnol ; 14(5): 3793-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24734637

ABSTRACT

We have fabricated a polymer light-emitting diode (PLED) from the conventional blue-emitting polymer, polyfluorene (PFO), by constructing a multilayer structure with non-metal ion containing water soluble non-conjugated polymer, polyurethane with F- ion (PU:F-), on the top of the PFO. The device with PU:F- layer shows a maximum luminance of 5294 cd/m2 at an applied voltage of 10 V while the one without PU:F- layer shows only 4439 cd/m2 at the same applied voltage. We propose the improvement of device performance with PU:F- layer was due to not only an effective hole blocking at the polymer-polymer interface but also increase of electric field strength with anode after electro-stactic repulsion between electrons from the cathod and anions from the water soluble polymer layer. We will discuss the effect of multilayer polymer structure in PLED in terms of current/voltage characteristics, luminance, and quantum efficiency related with the applied bias.

20.
Lab Chip ; 13(18): 3747-54, 2013 Sep 21.
Article in English | MEDLINE | ID: mdl-23900555

ABSTRACT

We present a novel fully integrated centrifugal microfluidic device with features for target antigen capture from biological samples, via a bead-based enzyme-linked immune-sorbent assay, and flow-enhanced electrochemical detection. The limit of detection (LOD) of our device for the C-reactive protein (CRP) was determined to be 4.9 pg mL(-1), a 17-fold improvement over quantification by optical density. The complete sample-to-answer protocol of our device is fully automated and takes less than 20 min. Overall, the presented microfluidic disc adds to the comparatively small number of fully integrated microfluidic-based platforms that utilize electrochemical detection and exemplifies how electrochemical detection can be enhanced by flow to successfully detect very low levels of biomarkers (e.g. pg mL(-1)).


Subject(s)
Electrochemical Techniques , Microfluidic Analytical Techniques/instrumentation , Animals , Antibodies/immunology , Automation , Biomarkers/analysis , Biosensing Techniques , C-Reactive Protein/analysis , C-Reactive Protein/immunology , Centrifugation , Enzyme-Linked Immunosorbent Assay , Humans , Mice , Microfluidic Analytical Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL