Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Heliyon ; 10(18): e38158, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39347407

ABSTRACT

A field experiment was conducted to assess the impact of various planting densities and levels of shoot thinning on cut flower yield, quality, soil chemical properties and cost economics in the commercially cultivated alstroemeria cultivar 'Capri'. The experiment involved three planting densities (4, 6 and 8 plants/m2) along with three shoot thinning levels (10 %, 20 % and 30 %). It was observed that higher planting density (4 plants/m2) promoted the length of cut stem, early bud formation, and flowering, optimal quality parameters, including maximum stem thickness, cut stem weight, floret quantity/stem, floret size, number of flowering stems/plant (yield) and vase life. Exclusive use of higher vegetative mass removal (30 % shoot thinning) was found to improve quality parameters such as the length of cut stem, number of flowering stems, stem thickness, weight of cut stem, floret quantity/stem, floret size, vase life, and early flowering. Soil samples were collected from each treatment and the consequent lab analysis revealed that the lower planting density and shoot thinning level resulted in maximum soil organic carbon, nitrogen, phosphorous and potassium content. In conclusion, planting density of 4 plants/m2 and 30 % shoot thinning emerged as the optimal combination for enhancing quantitative parameters in commercial alstroemeria cultivation. The study underscores the importance of strategic planting practices and vegetative mass management for maximizing yield and quality in alstroemeria production, along with ensuring higher economic returns.

2.
BMC Plant Biol ; 24(1): 510, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844838

ABSTRACT

BACKGROUND: Optimum planting date and appropriate fertilizer module are essential facets of chrysanthemum cultivation, to enhance quality yield, and improve soil health. A field-based study was undertaken over multiple growing seasons in 2022 and 2023, where six different planting dates, viz., P1:June 15, P2:June 30, P3:July 15, P4:July 30, P5:August 15 and P6:August 30 and two fertilizer modules, FM1:Jeevamrit @ 30 ml plant-1 and FM2:NPK @ 30 g m-2 were systematically examined using a Randomized Block Design (factorial), replicated thrice. RESULTS: P6 planting resulted in early bud formation (44.03 days) and harvesting stage (90.78 days). Maximum plant height (79.44 cm), plant spread (34.04 cm), cut stem length (68.40 cm), flower diameter (7.83 cm), stem strength (19.38˚), vase life (14.90 days), flowering duration (24.08 days), available soil N (314 kg ha-1), available P (37 kg ha-1), available K (347 kg ha-1), bacterial count (124.87 × 107 cfu g-1 soil), actinomycetes count (60.72 × 102 cfu g-1 soil), fungal count (30.95 × 102 cfu g-1 soil), microbial biomass (48.79 µg g-1 soil), dehydrogenase enzyme (3.64 mg TPF h-1 g-1 soil) and phosphatase enzyme (23.79 mol PNP h-1 g-1 soil) was recorded in P1 planting. Among the fertilization module, minimum days to bud formation (74.94 days) and days to reach the harvesting stage (120.95 days) were recorded with the application of NPK @30 g m-2. However, maximum plant height (60.62 cm), plant spread (23.10 cm), number of cut stems m-2 (43.88), cut stem length (51.34 cm), flower diameter (6.92 cm), stem strength (21.24˚), flowering duration (21.75 days), available soil N (317 kg ha-1), available P (37 kg ha-1) and available K (349 kg ha-1) were also recorded with the application of NPK @300 kg ha-1. Maximum vase life (13.87 days), OC (1.13%), bacterial count (131.65 × 107 cfu g-1 soil), actinomycetes count (60.89 × 102 cfu g-1 soil), fungal count (31.11 × 102 cfu g-1 soil), microbial biomass (51.27 µg g-1 soil), dehydrogenase enzyme (3.77 mg TPF h-1 g-1 soil) and phosphatase enzyme (21.72 mol PNP h-1 g-1 soil) were observed with the application of Jeevamrit @ 30 ml plant-1. CONCLUSION: Early planting (P1) and inorganic fertilization (NPK @ 30 g m-2) resulted in improved yield and soil macronutrient content. The soil microbial population and enzymatic activity were improved with the jeevamrit application. This approach highlights the potential for improved yield and soil health in chrysanthemum cultivation, promoting a more eco-friendly and economically viable agricultural model.


Subject(s)
Chrysanthemum , Fertilizers , Soil Microbiology , Soil , Chrysanthemum/growth & development , Fertilizers/analysis , Soil/chemistry , Seasons , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL