ABSTRACT
BACKGROUND: The interaction between antibodies and Fc gamma receptors (FcγRs) plays a critical role in regulating immune responses to Plasmodium falciparum. Polymorphisms in genes encoding FcγRs influence the host's capacity to control parasite infection. This study investigates whether non-coding variants influencing FcγR expression are associated with anti-malarial immunization and infection traits. METHODS: We utilized eQTL databases and functional annotations to identify non-coding variants, specifically rs1771575, rs2099684, and rs6700241, within the FCGR gene cluster. In addition, we examined the coding variants rs1801274 (p.His167Arg) and rs1050501 (p.Ile231Thr), which affect the affinity of FcγRIIa and FcγRIIb for IgG. These variants were genotyped in 163 individuals from Burkinabe families. Family-based linear mixed regression and Quantitative Transmission Disequilibrium Tests (QTDT) analyses were performed to assess associations with IgG levels and malaria infection, accounting for relevant covariates. RESULTS: Linear mixed models identified rs1771575 as associated with total IgG levels, while both rs1771575 and rs1801274 were linked to IgG2, and rs1050501 to IgG1 levels. A haplotype combining rs2099684 and rs6700241 was positively associated with IgG1. The rs1771575-CC and rs1050501-TT genotypes correlated with higher infection levels in children. QTDT models confirmed the association of rs1771575 with IgG2 and infection in children. CONCLUSIONS: Our findings suggest that the intergenic variant rs1771575 serves as an independent marker for IgG levels and blood infection in children. This highlights the interplay between regulatory variants and coding mutations in FCGR, which may influence immune function and antibody production. These results underscore the potential for personalized strategies to monitor humoral responses in malaria-endemic regions.
ABSTRACT
Antibodies play a crucial role in activating protective immunity against malaria by interacting with Fc-gamma receptors (FcγRs). Genetic variations in genes encoding FcγRs can affect immune cell responses to the parasite. In this study, our aim was to investigate whether non-coding variants that regulate FcγR expression could influence the prevalence of Plasmodium falciparum infection. Through bioinformatics approaches, we selected expression quantitative trait loci (eQTL) for FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B genes encoding FcγRs (FCGR), in whole blood. We prioritized two regulatory variants, rs2099684 and rs1771575, located in open genomic regions. These variants were identified using RegVar, ImmuNexUT, and transcription factor annotations specific to immune cells. In addition to these, we genotyped the coding variants FCGR2A/rs1801274 and FCGR2B/rs1050501 in 234 individuals from a malaria-endemic area in Burkina Faso. We conducted age and family-based analyses to evaluate associations with the prevalence of malarial infection in both children and adults. The analysis revealed that the regulatory rs1771575-CC genotype was predicted to influence FCGR2B/FCGR2C/FCGR3A transcripts in immune cells and was the sole variant associated with a higher prevalence of malarial infection in children. In conclusion, this study identifies the rs1771575 cis-regulatory variant affecting several FcγRs in myeloid and neutrophil cells and associates it with the inter-individual capacity of children living in Burkina Faso to control malarial infection.
Subject(s)
Malaria, Falciparum , Receptors, IgG , Adult , Child , Humans , Burkina Faso/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Multigene Family , Plasmodium falciparum/genetics , Receptors, IgG/geneticsABSTRACT
Background: We aimed to evaluate whether donor-related inflammatory markers found in kidney transplant preservation fluid can associate with early development of kidney allograft dysfunction. Methods: Our prospective study enrolled 74 consecutive donated organs who underwent kidney transplantation in our center between September 2020 and June 2021. Kidneys from 27 standard criteria donors were allocated to static cold storage and kidneys from 47 extended criteria donors to hypothermic machine perfusion. ELISA assessment of inflammatory biomarkers (IL-6, IL6-R, ICAM, VCAM, TNFα, IFN-g, CXCL1 and Fractalkine) was analyzed in view of a primary endpoint defined as the occurrence of delayed graft function or slow graft function during the first week following transplantation. Results: Soluble VCAM levels measured in transplant conservation fluid were significantly associated with recipient serum creatinine on day 7. Multivariate stepwise logistic regression analysis identified VCAM as an independent non-invasive predictor of early graft dysfunction, both at 1 week (OR: 3.57, p = .04, 95% CI: 1.06-12.03) and 3 Months (OR: 4.039, p = .034, 95% CI: 1.11-14.73) after transplant surgery. Conclusions: This prospective pilot study suggests that pre-transplant evaluation of VCAM levels could constitute a valuable indicator of transplant health and identify the VCAM-CD49d pathway as a target to limit donor-related vascular injury of marginal transplants.
Subject(s)
Organ Preservation , Renal Insufficiency , Allografts , Biomarkers , Humans , Kidney , Pilot Projects , Prospective StudiesABSTRACT
Fcγ receptors (FcγRs) interact with the C-reactive protein (CRP) and mediate activation of inflammation-related pathogenic mechanisms affecting cardiovascular health. Our study evaluated whether FcγRIIA and FcγRIIIA profiles are associated with the recurrence of adverse cardiovascular events during the first year after a primary acute coronary syndrome (ACS). The primary endpoint was the recurrence of cardiovascular events (RCE), identified as a composite outcome comprising acute heart failure (AHF) and major adverse cardiovascular events (MACE). We obtained blood samples of 145 ACS patients to measure hsCRP circulating levels, to identify FcγRIIA-131RH rs1801274 and FcγRIIIA-158FV rs396991 polymorphisms, to analyze circulating monocytes and NK cell subsets expressing CD16 and CD32, and to detect serum-mediated FCGR2A-HH activation by luciferase reporter assays. The hsCRP, CD32-expression, and Fc-R mediated activation levels were similar in all patients regardless of their MACE risk. In contrast, the hsCRP levels and the proportion of CD14+ circulating monocytes expressing the CD32 receptor for CRP were significantly higher in the patients who developed AHF. The FCGR2A rs1801274 HH genotype was significantly more common in patients who developed RCE and MACE than in RCE-free patients and associated with an enhanced percentage of circulating CD32+CD14+ monocytes. The FCGR2A-HH genotype was identified as an independent predictor of subsequent RCE (OR, 2.7; p = 0.048; CI, 1.01-7.44) by multivariate analysis. These findings bring preliminary evidence that host FCGR2A genetic variants can influence monocyte CD32 receptor expression and may contribute to the fine-tuning of CD32-driven chronic activating signals that affect the risk of developing RCEs following primary ACS events.
ABSTRACT
Background: Better understanding of the contribution of donor aging and comorbidity factors of expanded criteria donors (ECD) to the clinical outcome of a transplant is a challenge in kidney transplantation. We investigated whether the features of donor-derived stromal vascular fraction of perirenal adipose tissue (PRAT-SVF) could be indicative of the deleterious impact of the ECD microenvironment on a renal transplant. Methods: A comparative analysis of cellular components, transcriptomic and vasculogenic profiles was performed in PRAT-SVF obtained from 22 optimal donors and 31 ECD deceased donors. We then investigated whether these parameters could be associated with donor aging and early allograft dysfunction. Results: When compared with the PRAT-SVF of non-ECD donors, ECD PRAT-SVF displayed a lower proportion of stromal cells, a higher proportion of inflammatory NK cells. The global RNA sequencing approach indicated a differential molecular signature in the PRAT-SVF of ECD donors characterized by the over-expression of CXCL1 and IL1-ß inflammatory transcripts. The vasculogenic activity of PRAT-SVF was highly variable but was not significantly affected in marginal donors. Periorgan recruitment of monocytes/macrophages and NK cells in PRAT-SVF was associated with donor aging. The presence of NK cell infiltrates was associated with lower PRAT-SVF angiogenic activity and with early allograft dysfunction evaluated on day 7 and at 1 month post-transplant. Conclusions: Our results indicate that human NK cell subsets are differentially recruited in the periorgan environment of aging kidney transplants. We provide novel evidence that PRAT-SVF represents a non-invasive and timely source of donor material with potential value to assess inflammatory features that impact organ quality and function.
Subject(s)
Adipose Tissue/physiology , Inflammation/immunology , Kidney Transplantation , Kidney/immunology , Killer Cells, Natural/immunology , Macrophages/immunology , Primary Graft Dysfunction/immunology , Adult , Aged , Aging , Cell Movement , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Female , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Male , Middle Aged , Neovascularization, Pathologic , Prospective Studies , Tissue Donors , Transcriptome , TransplantsABSTRACT
Fc gamma receptors (FcγRs) play a major role in the regulation of humoral immune responses. Single-nucleotide polymorphisms (SNPs) of FCGR2A and FCGR3A can impact the expression level, IgG affinity and function of the CD32 and CD16 FcγRs in response to their engagement by the Fc fragment of IgG. The CD16 isoform encoded by FCGR3A [158V/V] controls the intensity of antibody-dependent cytotoxic alloimmune responses of natural killer cells (NK) and has been identified as a susceptibility marker predisposing patients to cardiac allograft vasculopathy after heart transplant. This study aimed to investigate whether FCGR2A and FCGR3A polymorphisms can also be associated with the clinical outcome of lung transplant recipients (LTRs). The SNPs of FCGR2A ([131R/H], rs1801274) and FCGR3A ([158V/F], rs396991) were identified in 158 LTRs and 184 Controls (CTL). The corresponding distribution of genotypic and allelic combinations was analyzed for potential links with the development of circulating donor-specific anti-HLA alloantibodies (DSA) detected at months 1 and 3 after lung transplant (LTx), the occurrence of acute rejection (AR) and chronic lung allograft dysfunction (CLAD), and the overall survival of LTRs. The FCGR3A [158V/V] genotype was identified as an independent susceptibility factor associated with higher rates of AR during the first trimester after LTx (HR 4.8, p < 0.0001, 95% CI 2.37-9.61), but it could not be associated with the level of CD16- mediated NK cell activation in response to the LTR's DSA, whatever the MFI intensity and C1q binding profiles of the DSA evaluated. The FCGR2A [131R/R] genotype was associated with lower CLAD-free survival of LTRs, independently of the presence of DSA at 3 months (HR 1.8, p = 0.024, 95% CI 1.08-3.03). Our data indicate that FCGR SNPs differentially affect the clinical outcome of LTRs and may be of use to stratify patients at higher risk of experiencing graft rejection. Furthermore, these data suggest that in the LTx setting, specific mechanisms of humoral alloreactivity, which cannot be solely explained by the complement and CD16-mediated pathogenic effects of DSA, may be involved in the development of acute and chronic lung allograft rejection.
Subject(s)
Genotype , Graft Rejection/genetics , Killer Cells, Natural/immunology , Receptors, IgG/genetics , Acute Disease , Adult , Biomarkers/metabolism , Chronic Disease , Cytotoxicity, Immunologic , Female , Gene Frequency , Graft Rejection/immunology , Graft Rejection/mortality , HLA Antigens/immunology , Humans , Isoantibodies/metabolism , Lung Transplantation , Male , Middle Aged , Polymorphism, Single Nucleotide , Survival AnalysisABSTRACT
OBJECTIVE: The autologous stromal vascular fraction (SVF) from adipose tissue is an alternative to cultured adipose-derived stem cells for use in regenerative medicine and represents a promising therapy for vasculopathy and hand disability in systemic sclerosis (SSc). However, the bioactivity of autologous SVF is not documented in this disease context. This study aimed to compare the molecular and functional profiles of the SVF-based medicinal product obtained from SSc and healthy subjects. METHODS: Good manufacturing practice (GMP)-grade SVF from 24 patients with SSc and 12 healthy donors (HD) was analysed by flow cytometry to compare the distribution of the CD45- and CD45+ haematopoietic cell subsets. The ability of SVF to form a vascular network was assessed using Matrigel in vivo assay. The transcriptomic and secretory profiles of the SSc-SVF were assessed by RNA sequencing and multiplex analysis, respectively, and were compared with the HD-SVF. RESULTS: The distribution of the leucocyte, endothelial, stromal, pericyte and transitional cell subsets was similar for SSc-SVF and HD-SVF. SSc-SVF retained its vasculogenic capacity, but the density of neovessels formed in SVF-loaded Matrigel implanted in nude mice was slightly decreased compared with HD-SVF. SSc-SVF displayed a differential molecular signature reflecting deregulation of angiogenesis, endothelial activation and fibrosis. CONCLUSIONS: Our study provides the first evidence that SSc does not compromise the vascular repair capacity of SVF, supporting its use as an innovative autologous biotherapy. The characterisation of the specific SSc-SVF molecular profile provides new perspectives for delineating markers of the potency of SVF and its targets for the treatment of SSc.
Subject(s)
Adipose Tissue/cytology , Neovascularization, Physiologic/physiology , Scleroderma, Systemic/physiopathology , Stromal Cells/physiology , Adipose Tissue/blood supply , Female , Humans , Male , Mesenchymal Stem Cell Transplantation , Middle Aged , Scleroderma, Systemic/therapyABSTRACT
The pathophysiology of systemic sclerosis (SSc) involves early endothelial and immune activation, both preceding the onset of fibrosis. We previously identified soluble fractalkine and circulating endothelial microparticles (EMPs) as biomarkers of endothelial inflammatory activation in SSc. Fractalkine plays a dual role as a membrane-bound adhesion molecule expressed in inflamed endothelial cells (ECs) and as a chemokine involved in the recruitment, transmigration, and cytotoxic activation of immune cells that express CX3CR1, the receptor of fractalkine, namely CD8 and γδ T cells and natural killer (NK) cells. We aimed to quantify circulating cytotoxic immune cells and their expression of CX3CR1. We further investigated the expression profile of NK cells chemokine receptors and activation markers and the potential of NK cells to induce EC activation in SSc. We performed a monocentric study (NCT 02636127) enrolling 15 SSc patients [15 females, median age of 55 years (39-63), 11 limited cutaneous form and 4 diffuse] and 15 healthy controls. Serum fractalkine levels were significantly increased in SSc patients. Circulating CD8 T cells numbers were decreased in SSc patients with no difference in their CX3CR1 expression. Circulating γδ T cells and NK cells numbers were preserved. CX3CR1 expression in CD8 and γδ T cells did not differ between SSc patients and controls. The percentage and level of CX3CR1 expression in NK cells were significantly lowered in SSc patients. Percentages of CXCR4, NKG2D, CD69-expressing NK cells, and their expression levels were decreased in NK cells. Conversely, CD16 level expression and percentages of CD16+ NK cells were preserved. The exposure of human microvascular dermic EC line (HMVEC-d) to peripheral blood mononuclear cells resulted in similar NK cells degranulation activity in SSc patients and controls. We further showed that NK cells purified from the blood of SSc patients induced enhanced release of EMPs than NK cells from controls. This study evidenced a peculiar NK cells phenotype in SSc characterized by decreased chemokine and activation receptors expression, that might reflect NK cells involvement in the pathogenic process. It also highlighted the role of NK cells as a potent mechanism inducing endothelial activation through enhanced EMPs release.
ABSTRACT
[This corrects the article on p. 1721 in vol. 8, PMID: 29312288.].
ABSTRACT
BACKGROUND: Cardiac transplantation is an effective therapy for end-stage heart failure. Because cardiac allograft vasculopathy (CAV) is the major cause of late mortality after heart transplant (HT), there is a need to identify markers that reflect inflammatory or cytotoxic immune mechanisms contributing to its onset. Noninvasive and early stratification of patients at risk remains a challenge for adapting individualized therapy. The CD16 (Fc-gamma receptor 3A [FCGR3A]) receptor was recently identified as a major determinant of antibody-mediated natural killer (NK) cell activation in HT biopsies; however, little is known about the role of CD16 in promoting allograft vasculopathy. This study aimed to investigate whether markers that reflect CD16-dependent circulating NK cell activation may identify patients at higher risk of developing CAV after HT. METHODS: Blood samples were collected from 103 patients undergoing routine coronarography angiography for CAV diagnosis (median 5 years since HT). Genomic and phenotypic analyses of FCGR3A/CD16 Fc-receptor profiles were compared in CAV-positive (n=52) and CAV-free patients (n=51). The levels of CD16 expression and rituximab-dependent cell cytotoxic activity of peripheral NK cells in HT recipients were evaluated using a noninvasive NK-cellular humoral activation test. RESULTS: Enhanced levels of CD16 expression and antibody-dependent NK cell cytotoxic function of HT recipients were associated with the FCGR3A-VV genotype. The frequency of the FCGR3A-VV genotype was significantly higher in the CAV+ group (odds ratio, 3.9; P=0.0317) than in the CAV- group. The FCGR3A-VV genotype was identified as an independent marker correlated with the presence of CAV at the time of coronary angiography by using multivariate logistic regression models. The FCGR3A-VV genotype was also identified as a baseline-independent predictor of CAV risk (odds ratio, 4.7; P=0.023). CONCLUSIONS: This study unravels a prominent role for the CD16-dependent NK cell activation pathway in the complex array of factors that favor the progression of transplant arteriosclerosis. It highlights the clinical potential of a noninvasive evaluation of FCGR3A/CD16 in the early stratification of CAV risk. The recognition of CD16 as a major checkpoint that controls immune surveillance may promote the design of individualized NK cell-targeted therapies to limit vascular damage in highly responsive sensitized patients. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01569334.
Subject(s)
Coronary Vessels/immunology , Genotype , Graft Rejection/immunology , Heart Transplantation , Killer Cells, Natural/immunology , Receptors, IgG/genetics , Adult , Cytotoxicity, Immunologic , Graft Rejection/diagnosis , Humans , Immunophenotyping , Lymphocyte Activation , Male , Middle Aged , Precision Medicine , Predictive Value of Tests , Prognosis , Receptors, IgG/metabolism , Rituximab/metabolism , Transplantation, HomologousABSTRACT
In patients with CKD, not only renal but also, nonrenal clearance of drugs is altered. Uremic toxins could modify the expression and/or activity of drug transporters in the liver. We tested whether the uremic toxin indoxyl sulfate (IS), an endogenous ligand of the transcription factor aryl hydrocarbon receptor, could change the expression of the following liver transporters involved in drug clearance: SLC10A1, SLC22A1, SLC22A7, SLC47A1, SLCO1B1, SLCO1B3, SLCO2B1, ABCB1, ABCB11, ABCC2, ABCC3, ABCC4, ABCC6, and ABCG2 We showed that IS increases the expression and activity of the efflux transporter P-glycoprotein (P-gp) encoded by ABCB1 in human hepatoma cells (HepG2) without modifying the expression of the other transporters. This effect depended on the aryl hydrocarbon receptor pathway. Presence of human albumin at physiologic concentration in the culture medium did not abolish the effect of IS. In two mouse models of CKD, the decline in renal function associated with the accumulation of IS in serum and the specific upregulation of Abcb1a in the liver. Additionally, among 109 heart or kidney transplant recipients with CKD, those with higher serum levels of IS needed higher doses of cyclosporin, a P-gp substrate, to obtain the cyclosporin target blood concentration. This need associated with serum levels of IS independent of renal function. These findings suggest that increased activity of P-gp could be responsible for increased hepatic cyclosporin clearance. Altogether, these results suggest that uremic toxins, such as IS, through effects on drug transporters, may modify the nonrenal clearance of drugs in patients with CKD.
Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Indican/blood , Receptors, Aryl Hydrocarbon/metabolism , Renal Insufficiency, Chronic/blood , ATP Binding Cassette Transporter, Subfamily B/genetics , Albumins/pharmacology , Animals , Cyclosporine/blood , Cyclosporine/pharmacokinetics , Disease Models, Animal , Female , Gene Expression/drug effects , Heart Transplantation , Hep G2 Cells , Humans , Immunosuppressive Agents/blood , Immunosuppressive Agents/pharmacokinetics , Indican/pharmacology , Kidney Transplantation , Liver/metabolism , Male , Mice , Middle Aged , Multidrug Resistance-Associated Protein 2 , RNA, Messenger/metabolism , Renal Insufficiency, Chronic/physiopathology , Signal Transduction , Up-RegulationABSTRACT
[This retracts the article DOI: 10.1093/ckj/sfw060.].
ABSTRACT
BACKGROUND: MicroRNAs (miRNAs) are innovative and informative blood-based biomarkers involved in numerous pathophysiological processes. In this study and based on our previous experimental data, we investigated miR-126, miR-143, miR-145, miR-155 and miR-223 as potential circulating biomarkers for the diagnosis and prognosis of patients with chronic kidney disease (CKD). The primary objective of this study was to assess the levels of miRNA expression at various stages of CKD. METHODS: RNA was extracted from serum, and RT-qPCR was performed for the five miRNAs and cel-miR-39 (internal control). RESULTS: Serum levels of miR-143, -145 and -223 were elevated in patients with CKD compared with healthy controls. They were further increased in chronic haemodialysis patients, but were below control levels in renal transplant recipients. In contrast, circulating levels of miR-126 and miR-155 levels, which were also elevated in CKD patients, were lower in the haemodialysis group and even lower in the transplant group. Four of the five miRNA species were correlated with estimated glomerular filtration rate, and three were correlated with circulating uraemic toxins. CONCLUSIONS: This exploratory study suggests that specific miRNAs could be biomarkers for complications of CKD, justifying further studies to link changes of miRNA levels with outcomes in CKD patients.
ABSTRACT
BACKGROUND: The disruption of endothelial homeostasis is a major determinant in the pathogenesis of systemic sclerosis (SSc) and is reflected by soluble and cellular markers of activation, injury and repair. We aimed to provide a combined assessment of endothelial markers to delineate specific profiles associated with SSc disease and its severity. METHODS: We conducted an observational, single-centre study comprising 45 patients with SSc and 41 healthy control subjects. Flow cytometry was used to quantify circulating endothelial microparticles (EMPs) and CD34+ progenitor cell subsets. Colony-forming unit-endothelial cells (CFU-ECs) were counted by culture assay. Circulating endothelial cells were enumerated using anti-CD146-based immunomagnetic separation. Blood levels of endothelin-1, vascular endothelial growth factor (VEGF) and soluble fractalkine (s-Fractalkine) were evaluated by enzyme-linked immunosorbent assay. Disease-associated markers were identified using univariate, correlation and multivariate analyses. RESULTS: Enhanced numbers of EMPs, CFU-ECs and non-haematopoietic CD34+CD45- endothelial progenitor cells (EPCs) were observed in patients with SSc. Patients with SSc also displayed higher serum levels of VEGF, endothelin-1 and s-Fractalkine. s-Fractalkine levels positively correlated with CD34+CD45- EPC numbers. EMPs, s-Fractalkine and endothelin-1 were independent factors associated with SSc. Patients with high CD34+CD45- EPC numbers had lower forced vital capacity values. Elevated s-Fractalkine levels were associated with disease severity, a higher frequency of pulmonary fibrosis and altered carbon monoxide diffusion. CONCLUSIONS: This study identifies the mobilisation of CD34+CD45- EPCs and high levels of s-Fractalkine as specific features of SSc-associated vascular activation and disease severity. This signature may provide novel insights linking endothelial inflammation and defective repair processes in the pathogenesis of SSc.
Subject(s)
Cell Movement , Chemokine CX3CL1/blood , Endothelial Progenitor Cells/metabolism , Scleroderma, Systemic/metabolism , Aged , Antigens, CD34/metabolism , Biomarkers/blood , Cell Count , Cell-Derived Microparticles/metabolism , Endothelial Progenitor Cells/pathology , Endothelin-1/blood , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Leukocyte Common Antigens/metabolism , Logistic Models , Male , Middle Aged , Multivariate Analysis , Scleroderma, Systemic/blood , Scleroderma, Systemic/pathology , Severity of Illness Index , Vascular Endothelial Growth Factor A/bloodABSTRACT
The role of natural killer (NK) cells in organ transplantation is controversial. This study aims to decipher their role in kidney transplant tolerance in humans. Previous studies highlighted several modulated genes involved in NK cell biology in blood from spontaneously operationally tolerant patients (TOLs; drug-free kidney-transplanted recipients with stable graft function). We performed a phenotypic, functional, and genetic characterization of NK cells from these patients compared to kidney-transplanted patients with stable graft function under immunosuppression and healthy volunteers (HVs). Both operationally TOLs and stable patients harbored defective expression of the NKp46 activator receptor and lytic molecules perforin and granzyme compared to HVs. Surprisingly, NK cells from operationally TOLs also displayed decreased expression of the CD16 activating marker (in the CD56Dim NK cell subset). This decrease was associated with impairment of their functional capacities upon stimulation, as shown by lower interferon gamma (IFNγ) production and CD107a membranous expression in a reverse antibody-dependent cellular cytotoxicity (ADCC) assay, spontaneous lysis assays, and lower target cell lysis in the 51Cr release assay compared to HVs. Conversely, despite impaired K562 cell lysis in the 51Cr release assay, patients with stable graft function harbored a normal reverse ADCC and even increased amounts of IFNγ+ NK cells in the spontaneous lysis assay. Altogether, the strong impairment of the phenotype and functional cytotoxic capacities of NK cells in operationally TOLs may accord with the establishment of a pro-tolerogenic environment, despite remaining highly activated after transplantation in patients with stable graft function.
ABSTRACT
Although kidney transplantation remains the best treatment for end-stage renal failure, it is limited by chronic humoral aggression of the graft vasculature by donor-specific antibodies (DSAs). The complement-independent mechanisms that lead to the antibody-mediated rejection (ABMR) of kidney allografts remain poorly understood. Increasing lines of evidence have revealed the relevance of natural killer (NK) cells as innate immune effectors of antibody-dependent cellular cytotoxicity (ADCC), but few studies have investigated their alloreactive potential in the context of solid organ transplantation. Our study aimed to investigate the potential contribution of the antibody-dependent alloreactive function of NK cells to kidney graft dysfunction. We first conducted an observational study to investigate whether the cytotoxic function of NK cells is associated with chronic allograft dysfunction. The NK-Cellular Humoral Activation Test (NK-CHAT) was designed to evaluate the recipient and antibody-dependent reactivity of NK cells against allogeneic target cells. The release of CD107a/Lamp1(+) cytotoxic granules, resulting from the recognition of rituximab-coated B cells by NK cells, was analyzed in 148 kidney transplant recipients (KTRs, mean graft duration: 6.2 years). Enhanced ADCC responsiveness was associated with reduced graft function and identified as an independent risk factor predicting a decline in the estimated glomerular filtration rate over a 1-year period (hazard ratio: 2.83). In a second approach, we used the NK-CHAT to reveal the cytotoxic potential of circulating alloantibodies in vitro. The level of CD16 engagement resulting from the in vitro recognition of serum-coated allogeneic B cells or splenic cells was further identified as a specific marker of DSA-induced ADCC. The NK-CHAT scoring of sera obtained from 40 patients at the time of transplant biopsy was associated with ABMR diagnosis. Our findings indicate that despite the administration of immunosuppressive treatments, robust ADCC responsiveness can be maintained in some KTRs. Because it evaluates both the Fab recognition of alloantigens and Fc-driven NK cell activation, the NK-CHAT represents a potentially valuable tool for the non-invasive and individualized evaluation of humoral risk during transplantation.
ABSTRACT
The major histocompatibility complex class I related chain (MIC) is a stress-inducible protein modulating the function of immune natural killer (NK) cells, a major leukocyte subset involved in proper trophoblast invasion and spiral artery remodeling. Aim of the study was to evaluate whether upregulation of soluble MIC (sMIC) may reflect immune disorders associated to vascular pregnancy diseases (VPD). sMIC was more frequently detected in the plasma of women with a diagnostic of VPD (32%) than in normal term-matched pregnancies (1.6%, P < 0.0001), with highest prevalence in intrauterine fetal death (IUDF, 44%) and vascular intrauterine growth restriction (IUGR, 39%). sMIC levels were higher in preeclampsia (PE) than in IUFD (P < 0.01) and vascular IUGR (P < 0.05). sMIC detection was associated with bilateral early diastolic uterine notches (P = 0.037), thrombocytopenia (P = 0.03), and high proteinuria (P = 0.03) in PE and with the vascular etiology of IUGR (P = 0.0038). Incubation of sMIC-positive PE plasma resulted in downregulation of NKG2D expression and NK cell-mediated IFN-γ production in vitro. Our work thus suggests that detection of sMIC molecule in maternal plasma may constitute a hallmark of altered maternal immune functions that contributes to vascular disorders that complicate pregnancy, notably by impairing NK-cell mediated production of IFN-γ, an essential cytokine favoring vascular modeling.
Subject(s)
Histocompatibility Antigens Class I/blood , Pregnancy Complications, Cardiovascular/blood , Pregnancy Complications, Cardiovascular/epidemiology , Adult , Cells, Cultured , Down-Regulation/drug effects , Female , Fetal Growth Retardation/blood , Fetal Growth Retardation/epidemiology , Histocompatibility Antigens Class I/pharmacology , Humans , Interferon-gamma/analysis , Interferon-gamma/metabolism , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily K/analysis , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Pregnancy , Proteinuria/blood , Proteinuria/epidemiology , Thrombocytopenia/blood , Thrombocytopenia/epidemiology , Young AdultABSTRACT
Tat is a viral protein secreted from HIV infected cells and extra cellular Tat is suspected to prevent destruction of HIV infected cells from cells of the cellular immunity. The effect of anti retroviral therapy (ART) on Tat secretion has never been investigated. In this study, we tested for antibody reactivity against Tat variants representative of the main HIV subtypes in HIV positive patients receiving ART with undetectable viral loads ( < 40 copies/mL) over the course of one year with a blood sampling every three months. For each of theses five blood sampling, an average of 50 % of patients had Anti-Tat IgG, it turned out that 86% of patients could recognize Tat at least in one blood sampling during the course of the study. Amazingly, anti-Tat IgG appeared and/or disappeared in 66 % of patients. Only 20% had anti-Tat IgG remaining persistently while 14% were consistently without anti Tat IgG in the five blood sampling. No significant correlation was found between anti-Tat IgG and CD4+ T cell, CD8+ T cell and B cell counts revealing the incapacity of these anti Tat IgG to neutralize extra cellular Tat. Interestingly the absence and then the appearance of anti-Tat IgG in patients suggest the presence of HIV infected cells in the blood that may constitute a significant reservoir of HIV infected cells. As a conclusion antiretroviral therapy does not block the secretion of Tat and may explain why HIV infected cells can survive in spite of an effective ART treatment.