Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 853
Filter
1.
Epilepsia ; 65(8): 2470-2482, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39119787

ABSTRACT

OBJECTIVE: Given its key homeostatic role affecting mitochondria, ionotropic and metabotropic receptors, and voltage-gated ion channels, sigma-1 receptor (Sig1R) represents an interesting target for epilepsy management. Antiseizure effects of the positive allosteric modulator E1R have already been reported in acute seizure models. Although modulation of serotonergic neurotransmission is considered the main mechanism of action of fenfluramine, its interaction with Sig1R may be of additional relevance. METHODS: To further explore the potential of Sig1R as a target, we assessed the efficacy and tolerability of E1R and fenfluramine in two chronic mouse models, including an amygdala kindling paradigm and the intrahippocampal kainate model. The relative contribution of the interaction with Sig1R was analyzed using combination experiments with the Sig1R antagonist NE-100. RESULTS: Whereas E1R exerted pronounced dose-dependent antiseizure effects at well-tolerated doses in fully kindled mice, only limited effects were observed in response to fenfluramine, without a clear dose dependency. In the intrahippocampal kainate model, E1R failed to influence electrographic seizure activity. In contrast, fenfluramine significantly reduced the frequency of electrographic seizure events and their cumulative duration. Pretreatment with NE-100 reduced the effects of E1R and fenfluramine in the kindling model. Surprisingly, pre-exposure to NE-100 in the intrahippocampal kainate model rather enhanced and prolonged fenfluramine's antiseizure effects. SIGNIFICANCE: In conclusion, the kindling data further support Sig1R as an interesting target for novel antiseizure medications. However, it is necessary to further explore the preclinical profile of E1R in chronic epilepsy models with spontaneous seizures. Despite the rather limited effects in the kindling paradigm, the findings from the intrahippocampal kainate model suggest that it is of interest to further assess a possible broad-spectrum potential of fenfluramine.


Subject(s)
Disease Models, Animal , Epilepsy , Fenfluramine , Kindling, Neurologic , Receptors, sigma , Sigma-1 Receptor , Animals , Receptors, sigma/antagonists & inhibitors , Receptors, sigma/drug effects , Mice , Kindling, Neurologic/drug effects , Fenfluramine/pharmacology , Epilepsy/drug therapy , Male , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Dose-Response Relationship, Drug , Piperazines/pharmacology , Piperazines/therapeutic use , Amygdala/drug effects , Amygdala/physiopathology , Hippocampus/drug effects , Chronic Disease , Kainic Acid/pharmacology , Mice, Inbred C57BL
2.
NPJ Vaccines ; 9(1): 136, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097573

ABSTRACT

Avian influenza poses a severe threat to poultry production and global food security, prompting the development of vaccination programs in numerous countries. Modified live virus (MLV) vaccines, with their potential for mass application, offer a distinct advantage over existing options. However, concerns surrounding reversion, recombination, and unintended transmission have hindered the progress of MLV development for avian influenza in poultry. To address these concerns, we engineered reassortment-impaired, non-transmissible, safe, immunogenic, and protective MLVs through the rearrangement of internal gene segments and additional modifications to the surface gene segments HA and NA. The unique peptide marker aspartic acid-arginine-proline-alanine-valine-isoleucine-alanine-asparragine (DRPAVIAN) was incorporated into HA, while NA was modified to encode the chicken interleukin-18 (ckIL18) gene (MLV-H9N2-IL). In vitro, the MLV-H9N2 and MLV-H9N2-IL candidates demonstrated stability and virus titers comparable to the wild-type H9N2 strain. In chickens, the MLV-H9N2 and MLV-H9N2-IL candidates did not transmit via direct contact. Co-infection studies with wild-type virus confirmed that the altered HA and NA segments exhibited fitness disadvantages and did not reassort. Vaccinated chickens showed no clinical signs upon vaccination, all seroconverted, and the inclusion of ckIL18 in the MLV-H9N2-IL vaccine enhanced neutralizing antibody production. A significant decrease in viral loads post-challenge underscored the protective effect of the MLVs. The MLV-H9N2-IL vaccine, administered via drinking water, proved immunogenic in chickens in a dose-dependent manner, generating protective levels of neutralizing antibodies upon aggressive homologous virus challenge. In summary, this study lays the groundwork for safe MLVs against avian influenza suitable for mass vaccination efforts.

3.
Article in English | MEDLINE | ID: mdl-38965194

ABSTRACT

Anticancer systemic therapy comprises a complex and growing group of drugs. Some of the new agents with novel mechanisms of action that have appeared are difficult to fit in the groups of classical chemotherapy, hormones, tyrosine-kinase inhibitors, and monoclonal antibodies. We propose a classification based on two levels of information: the site of action and the mechanism of action. Regarding the former, drugs can exert their action in the tumor cell, the tumor vasculature, the immune system, or the endocrine system. The mechanism of action refers to the molecular target.

4.
Gastroenterology ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971196

ABSTRACT

BACKGROUND & AIMS: WNT signaling is central to spatial tissue arrangement and regulating stem cell activity, and it represents the hallmark of gastrointestinal cancers. Although its role in driving intestinal tumors is well characterized, WNT's role in gastric tumorigenesis remains elusive. METHODS: We have developed mouse models to control the specific expression of an oncogenic form of ß-catenin in combination with MYC activation in Lgr5+ cells of the gastric antrum. We used multiomics approaches applied in vivo and in organoid models to characterize their cooperation in driving gastric tumorigenesis. RESULTS: We report that constitutive ß-catenin stabilization in the stomach has negligible oncogenic effects and requires MYC activation to induce gastric tumor formation. Although physiologically low MYC levels in gastric glands limit ß-catenin transcriptional activity, increased MYC expression unleashes the WNT oncogenic transcriptional program, promoting ß-catenin enhancer invasion without a direct transcriptional cooperation. MYC activation induces a metabolic rewiring that suppresses lysosomal biogenesis through mTOR and ERK activation and MiT/TFE inhibition. This prevents EPCAM degradation by macropinocytosis, promoting ß-catenin chromatin accumulation and activation of WNT oncogenic transcription. CONCLUSION: Our results uncovered a new signaling framework with important implications for the control of gastric epithelial architecture and WNT-dependent oncogenic transformation.

5.
Front Microbiol ; 15: 1423995, 2024.
Article in English | MEDLINE | ID: mdl-39035445

ABSTRACT

Streptococcus pneumoniae is a major pathogen responsible for severe complications in patients with prior influenza A virus (IAV) infection. We have previously demonstrated that S. pneumoniae exhibits increased intracellular survival within IAV-infected cells. Fluoroquinolones (FQs) are widely used to treat pneumococcal infections. However, our prior work has shown that S. pneumoniae can develop intracellular FQ persistence, a phenomenon triggered by oxidative stress within host cells. This persistence allows the bacteria to withstand high FQ concentrations. In this study, we show that IAV infection enhances pneumococcal FQ persistence during intracellular survival within pneumocytes, macrophages, and neutrophils. This enhancement is partly due to increased oxidative stress induced by the viral infection. We find that this phenotype is particularly pronounced in autophagy-proficient host cells, potentially resulting from IAV-induced blockage of autophagosome-lysosome fusion. Moreover, we identified several S. pneumoniae genes involved in oxidative stress response that contribute to FQ persistence, including sodA (superoxide dismutase), clpL (chaperone), nrdH (glutaredoxin), and psaB (Mn+2 transporter component). Our findings reveal a novel mechanism of antibiotic persistence promoted by viral infection within host cells. This underscores the importance of considering this phenomenon when using FQs to treat pneumococcal infections, especially in patients with concurrent influenza A infection.

6.
PLoS One ; 19(7): e0301664, 2024.
Article in English | MEDLINE | ID: mdl-38985719

ABSTRACT

Influenza viruses constitute a major threat to human health globally. The viral surface glycoprotein hemagglutinin (HA) is the immunodominant antigen, contains the site for binding to the cellular receptor (RBS), and it is the major target of neutralizing antibody responses post-infection. We developed llama-derived single chain antibody fragments (VHHs) specific for type A influenza virus. Four VHHs were identified and further characterized. VHH D81 bound residues in the proximity of the C-terminal region of HA1 of H1 and H5 subtypes, and showed weak neutralizing activity, whereas VHH B33 bound residues in the proximity of the N-terminal region of the HA's stem domain (HA2) of H1, H5, and H9 subtypes, and showed no neutralizing activity. Of most relevance, VHHs E13 and G41 recognized highly conserved conformational epitopes on the H1 HA's globular domain (HA1) and showed high virus neutralizing activity (ranging between 0.94 to 0.01µM), when tested against several human H1N1 isolates. Additionally, E13 displayed abrogated virus replication of a panel of H1N1 strains spanning over 80 years of antigenic drift and isolated from human, avian, and swine origin. Interestingly, E13 conferred protection in vivo at a dose as low as 0.05 mg/kg. Mice treated with E13 intranasally resulted in undetectable virus challenge loads in the lungs at day 4 post-challenge. The transfer of sterilizing pan-H1 immunity, by a dose in the range of micrograms given intranasally, is of major significance for a monomeric VHH and supports the further development of E13 as an immunotherapeutic agent for the mitigation of influenza infections.


Subject(s)
Antibodies, Neutralizing , Camelids, New World , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Single-Domain Antibodies , Animals , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Single-Domain Antibodies/immunology , Antibodies, Neutralizing/immunology , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Camelids, New World/immunology , Antibodies, Viral/immunology , Female , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Epitopes/immunology , Dogs , Mice, Inbred BALB C
7.
Front Med (Lausanne) ; 11: 1395698, 2024.
Article in English | MEDLINE | ID: mdl-38933107

ABSTRACT

Despite important progress in modern medicine, widely regarded as an indispensable foundation of healthcare in all highly advanced nations and regions, not all patients respond well to available treatments in biomedicine alone. Additionally, there are concerns about side effects of many medications and interventions, the unsustainable cost of healthcare and the low resolution of chronic non-communicable diseases and mental disorders whose incidence has risen in the last decades. Besides, the chronic stress and burnout of many healthcare professionals impairs the therapeutic relationship. These circumstances call for a change in the current paradigm and practices of biomedicine healthcare. Most of the world population (80%) uses some form of traditional, complementary, and integrative medicine (T&CM), usually alongside biomedicine. Patients seem equally satisfied with biomedicine and T&CM, but in the field of T&CM there are also many challenges, such as unsupported claims for safety and/or efficacy, contamination of herbal medicines and problems with regulation and quality standards. As biomedicine and T&CM seem to have different strengths and weaknesses, integration of both approaches may be beneficial. Indeed, WHO has repeatedly called upon member states to work on the integration of T&CM into healthcare systems. Integrative medicine (IM) is an approach that offers a paradigm for doing so. It combines the best of both worlds (biomedicine and T&CM), based on evidence for efficacy and safety, adopting a holistic personalized approach, focused on health. In the last decades academic health centers are increasingly supportive of IM, as evidenced by the foundation of national academic consortia for integrative medicine in Brazil (2017), the Netherlands (2018), and Germany (2024) besides the pioneering American consortium (1998). However, the integration process is slow and sometimes met with criticism and even hostility. The WHO T&CM strategies (2002-2005 and 2014-2023) have provided incipient guidance on the integration process, but several challenges are yet to be addressed. This policy review proposes several possible solutions, including the establishment of a global matrix of academic consortia for IM, to update and extend the WHO T&CM strategy, that is currently under review.

8.
PeerJ Comput Sci ; 10: e2095, 2024.
Article in English | MEDLINE | ID: mdl-38855217

ABSTRACT

Mixed integer nonlinear programming (MINLP) addresses optimization problems that involve continuous and discrete/integer decision variables, as well as nonlinear functions. These problems often exhibit multiple discontinuous feasible parts due to the presence of integer variables. Discontinuous feasible parts can be analyzed as subproblems, some of which may be highly constrained. This significantly impacts the performance of evolutionary algorithms (EAs), whose operators are generally insensitive to constraints, leading to the generation of numerous infeasible solutions. In this article, a variant of the differential evolution algorithm (DE) with a gradient-based repair method for MINLP problems (G-DEmi) is proposed. The aim of the repair method is to fix promising infeasible solutions in different subproblems using the gradient information of the constraint set. Extensive experiments were conducted to evaluate the performance of G-DEmi on a set of MINLP benchmark problems and a real-world case. The results demonstrated that G-DEmi outperformed several state-of-the-art algorithms. Notably, G-DEmi did not require novel improvement strategies in the variation operators to promote diversity; instead, an effective exploration within each subproblem is under consideration. Furthermore, the gradient-based repair method was successfully extended to other DE variants, emphasizing its capacity in a more general context.

9.
Int J Environ Health Res ; : 1-12, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842028

ABSTRACT

Various exogenous factors, such as microbiological and chemical contamination condition food security. Salmonella Typhimurium (S. Typhimurium) is the cause of salmonellosis. This bacterium utilizes phagocytosis to create bacterial reservoirs. On the other hand, exposure to chemical contaminants, such as pesticides, increases susceptibility to numerous infections. Therefore, this research aims to evaluate the effect of co-exposure to diazoxon and S. Typhimurium on the in vitro infection dynamics. For this purpose, human mononuclear cells were pre-exposed in vitro to diazoxon and then challenged with S. Typhimurium at 1, 8, and 24 h. Bacterial internalization, actin polymerization, and reactive oxygen species (ROS) were analyzed. Obtained data show that mononuclear cells previously exposed to diazoxon exhibit greater internalization of S. Typhimurium. Likewise, greater ROS production and an increase in actin polymerization were observed. Therefore, in the proposed scenario, obtained data suggest that co-exposure to diazoxon and S. Typhimurium increases susceptibility to acquiring an illness.

10.
J Phys Chem Lett ; 15(21): 5747-5753, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38775633

ABSTRACT

The use of electric fields applied across magnetic heterojunctions that lack spatial inversion symmetry has been previously proposed as a nonmagnetic means of controlling localized magnetic moments through spin-orbit torques (SOT). The implementation of this concept at the single-molecule level has remained a challenge, however. Here, we present first-principles calculations of SOT in a single-molecule junction under bias and beyond linear response. Employing a self-consistency scheme invoking density functional theory and nonequilibrium Green's function theory including spin-orbit interaction, we compute the change of the magnetization with the bias voltage and the associated current-induced SOT. Within the linear regime our quantitative estimates for the SOT in single-molecule junctions yield values similar to those known for magnetic interfaces. Our findings contribute to an improved microscopic understanding of SOT in single molecules.

11.
Article in English | MEDLINE | ID: mdl-38814543

ABSTRACT

PURPOSE: Determine if the gene expression profiles of ovarian support cells (OSCs) and cumulus-free oocytes are bidirectionally influenced by co-culture during in vitro maturation (IVM). METHODS: Fertility patients aged 25 to 45 years old undergoing conventional ovarian stimulation donated denuded immature oocytes for research. Oocytes were randomly allocated to either OSC-IVM culture (intervention) or Media-IVM culture (control) for 24-28 h. The OSC-IVM culture condition was composed of 100,000 OSCs in suspension culture with human chorionic gonadotropin (hCG), recombinant follicle stimulating hormone (rFSH), androstenedione, and doxycycline supplementation. The Media-IVM control lacked OSCs and contained the same supplementation. A limited set of in vivo matured MII oocytes were donated for comparative evaluation. Endpoints consisted of MII formation rate, morphological and spindle quality assessment, and gene expression analysis compared to in vitro and in vivo controls. RESULTS: OSC-IVM resulted in a statistically significant improvement in MII formation rate compared to the Media-IVM control, with no apparent effect on morphology or spindle assembly. OSC-IVM MII oocytes displayed a closer transcriptomic maturity signature to IVF-MII controls than Media-IVM control MII oocytes. The gene expression profile of OSCs was modulated in the presence of oocytes, displaying culture- and time-dependent differential gene expression during IVM. CONCLUSION: The OSC-IVM platform is a novel tool for rescue maturation of human oocytes, yielding oocytes with improved nuclear maturation and a closer transcriptomic resemblance to in vivo matured oocytes, indicating a potential enhancement in oocyte cytoplasmic maturation. These improvements on oocyte quality after OSC-IVM are possibly occurring through bidirectional crosstalk of cumulus-free oocytes and ovarian support cells.

12.
Hum Vaccin Immunother ; 20(1): 2347019, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38807261

ABSTRACT

Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.


Subject(s)
Birds , Influenza Vaccines , Influenza in Birds , Influenza, Human , Pandemics , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Humans , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza, Human/immunology , Influenza in Birds/prevention & control , Influenza in Birds/epidemiology , Pandemics/prevention & control , Vaccine Development , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Clinical Trials as Topic , Disease Models, Animal , Vaccination , Pandemic Preparedness
13.
Int J Inj Contr Saf Promot ; : 1-20, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647115

ABSTRACT

As the elderly population grows, there is a greater concern for their safety on the roads. This is particularly important for elderly pedestrians who are more vulnerable to accidents. In Spain, one of the most aged countries in the world, the elderly accounted for 70% of all pedestrian deaths in 2019. In this study, the focus was on analysing the occurrence of elderly pedestrian-vehicle collisions in Spanish municipalities and how it is related to the built environment. The study used the hurdle negative binomial model to analyse the number of elderly and non-elderly pedestrian accidents per municipality in 2016-2019. The exploratory analysis showed that cities above 50,000 inhabitants were safer for the elderly, and larger provincial capitals had lower elderly pedestrian traffic accident rates. The occurrence of all pedestrian traffic accidents was linked to the socio-demographic features. For elderly pedestrians, land use was found to be influential, with a lower proportion of land covered by manufacturing and service activities linked to a smaller number of accidents. Results showed that improving road safety for older pedestrians may not necessarily compromise the situation for the rest of population. Hence, policymakers should focus on infrastructure improvements adapted to the needs of elderly pedestrians.

15.
PLoS One ; 19(4): e0302031, 2024.
Article in English | MEDLINE | ID: mdl-38603692

ABSTRACT

Chronic neuroinflammation is characterized by increased blood-brain barrier (BBB) permeability, leading to molecular changes in the central nervous system that can be explored with biomarkers of active neuroinflammatory processes. Magnetic resonance imaging (MRI) has contributed to detecting lesions and permeability of the BBB. Ultra-small superparamagnetic particles of iron oxide (USPIO) are used as contrast agents to improve MRI observations. Therefore, we validate the interaction of peptide-88 with laminin, vectorized on USPIO, to explore BBB molecular alterations occurring during neuroinflammation as a potential tool for use in MRI. The specific labeling of NPS-P88 was verified in endothelial cells (hCMEC/D3) and astrocytes (T98G) under inflammation induced by interleukin 1ß (IL-1ß) for 3 and 24 hours. IL-1ß for 3 hours in hCMEC/D3 cells increased their co-localization with NPS-P88, compared with controls. At 24 hours, no significant differences were observed between groups. In T98G cells, NPS-P88 showed similar nonspecific labeling among treatments. These results indicate that NPS-P88 has a higher affinity towards brain endothelial cells than astrocytes under inflammation. This affinity decreases over time with reduced laminin expression. In vivo results suggest that following a 30-minute post-injection, there is an increased presence of NPS-P88 in the blood and brain, diminishing over time. Lastly, EAE animals displayed a significant accumulation of NPS-P88 in MRI, primarily in the cortex, attributed to inflammation and disruption of the BBB. Altogether, these results revealed NPS-P88 as a biomarker to evaluate changes in the BBB due to neuroinflammation by MRI in biological models targeting laminin.


Subject(s)
Blood-Brain Barrier , Laminin , Animals , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , Laminin/metabolism , Neuroinflammatory Diseases , Endothelial Cells/metabolism , Inflammation/diagnostic imaging , Inflammation/metabolism , Magnetic Resonance Imaging/methods
16.
J Virol ; 98(5): e0054924, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38624241

ABSTRACT

As an Argentine scientist, the defunding of CONICET and INTA feels like a blow to progress and our future. Despite free education, these cuts force talented researchers to seek opportunities abroad. Argentina's history of scientific achievement, from Nobel Prizes to COVID-19 vaccines, is at risk. Defunding science weakens our ability to solve problems and compete globally.


Subject(s)
Biomedical Research , Humans , Argentina , Biomedical Research/economics , Biomedical Research/education , Science/economics , Science/education , Brain Drain
17.
Med Clin (Barc) ; 163(3): 128-131, 2024 Aug 16.
Article in English, Spanish | MEDLINE | ID: mdl-38643026

ABSTRACT

INTRODUCTION: Peripheral arterial disease is a marker of vascular damage that is diagnosed by measuring the ankle-brachial index. The aim of this study was to determine the validity and agreement of the MESI ABPI-MD and Microlife WatchBP® office-ABI oscillometric devices with respect to the gold standard arterial Doppler. MATERIALS AND METHODS: Observational, cross-sectional, descriptive study of inpatients who underwent ABI measurement with the three devices. Values are considered normal between 1-1.4, indeterminate between 0.91-0.99 and pathological ≤0.9 and >1.4. RESULTS: A total of 187 patients (54.4% male) with a mean age of 66 years were included. The Doppler results were inferior to those of the oscillometric devices (median [IQR] 1.1 [0.2] vs. 1.2 [0.2], P<.05), with no significant differences between the automated devices (P=.29 for the right lower limb and P=.342 for the left lower limb). Both devices had high specificity (96.5-99.2%) and low sensitivity (29.5-45.4%). The correlation of the results was good-moderate for MESI and moderate for Microlife. The agreement between the two was acceptable-moderate. CONCLUSION: Automated oscillometric devices could be useful in asymptomatic patients as an alternative to arterial Doppler.


Subject(s)
Ankle Brachial Index , Oscillometry , Peripheral Arterial Disease , Ultrasonography, Doppler , Humans , Female , Male , Peripheral Arterial Disease/diagnostic imaging , Peripheral Arterial Disease/diagnosis , Aged , Cross-Sectional Studies , Oscillometry/instrumentation , Middle Aged , Sensitivity and Specificity , Aged, 80 and over , Reproducibility of Results
18.
Methods Cell Biol ; 184: 97-103, 2024.
Article in English | MEDLINE | ID: mdl-38555161

ABSTRACT

Current strategies to undermine the deleterious influence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment (TME) are lacking effective clinical solutions, in large part, due to insufficient knowledge on susceptible cellular and molecular targets. We describe here the application of biomimetic microfabricated platforms designed to analyze migratory phenotypes of MDSCs in the tumor niche ex vivo, which may enable accelerated therapeutic discovery. By mimicking the guided structural cues present in the physiological architecture of the TME, aligned microtopography substrates can elucidate potential interventions on migratory phenotypes of MDSCs at the single clonal level. Coupled with cellular and molecular biology analysis tools, our approach employs real-time tracking analysis of cell motility to probe the dissemination characteristics of MDSCs under guided migration conditions. These methods allow us to identify cellular subpopulations of interest based on their disseminative and suppressive capabilities. By doing so, we illustrate the potential of applying microscale engineering tools, in concert with dynamic live cell imaging and bioanalysis methods to uncover novel exploitable motility targets for advancing cancer therapy discovery. The inherent simplicity and extended application to a variety of contexts in tumor-associated cell migration render this method widely accessible to existing biological laboratory conditions and interests.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Myeloid-Derived Suppressor Cells/pathology , Biomimetics , Neoplasms/pathology , Phenotype , Tumor Microenvironment
19.
Br J Cancer ; 130(10): 1670-1678, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38486123

ABSTRACT

BACKGROUND: The Colorectal Cancer Subtyping Consortium established four Consensus Molecular Subtypes (CMS) in colorectal cancer: CMS1 (microsatellite-instability [MSI], Immune), CMS2 (Canonical, epithelial), CMS3 (Metabolic), and CMS4 (Mesenchymal). However, only MSI tumour patients have seen a change in their disease management in clinical practice. This study aims to characterise the proteome of colon cancer CMS and broaden CMS's clinical utility. METHODS: One-hundred fifty-eight paraffin samples from stage II-III colon cancer patients treated with adjuvant chemotherapy were analysed through DIA-based mass-spectrometry proteomics. RESULTS: CMS1 exhibited overexpression of immune-related proteins, specifically related to neutrophils, phagocytosis, antimicrobial response, and a glycolytic profile. These findings suggested potential therapeutic strategies involving immunotherapy and glycolytic inhibitors. CMS3 showed overexpression of metabolic proteins. CMS2 displayed a heterogeneous protein profile. Notably, two proteomics subtypes within CMS2, with different protein characteristics and prognoses, were identified. CMS4 emerged as the most distinct group, featuring overexpression of proteins related to angiogenesis, extracellular matrix, focal adhesion, and complement activation. CMS4 showed a high metastatic profile and suggested possible chemoresistance that may explain its worse prognosis. CONCLUSIONS: DIA proteomics revealed new features for each colon cancer CMS subtype. These findings provide valuable insights into potential therapeutic targets for colorectal cancer subtypes in the future.


Subject(s)
Colonic Neoplasms , Proteomics , Humans , Proteomics/methods , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Female , Male , Prognosis , Aged , Middle Aged , Microsatellite Instability , Chemotherapy, Adjuvant , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
20.
J Subst Use Addict Treat ; 161: 209341, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490334

ABSTRACT

BACKGROUND: North America has been in an unrelenting overdose crisis for almost a decade. British Columbia (BC), Canada declared a public health emergency due to overdoses in 2016. Risk Mitigation Guidance (RMG) for prescribing pharmaceutical opioids, stimulants and benzodiazepine alternatives to the toxic drug supply ("safer supply") was implemented in March 2020 in an attempt to reduce harms of COVID-19 and overdose deaths in BC during dual declared public health emergencies. Our objective was to describe early implementation of RMG among prescribers in BC. METHODS: We conducted a convergent mixed methods study drawing population-level linked administrative health data and qualitative interviews with 17 prescribers. The Consolidated Framework for Implementation Research (CFIR) informs our work. The study utilized seven linked databases, capturing the characteristics of prescribers for people with substance use disorder to describe the characteristics of those prescribing under the RMG using univariate summary statistics and logistic regression analysis. For the qualitative analysis, we drew on interpretative descriptive methodology to identify barriers and facilitators to implementation. RESULTS: Analysis of administrative databases demonstrated limited uptake of the intervention outside large urban centres and a highly specific profile of urban prescribers, with larger and more complex caseloads associated with RMG prescribing. Nurse practitioners were three times more likely to prescribe than general practitioners. Qualitatively, the study identified five themes related to the five CFIR domains: 1) RMG is helpful but controversial; 2) Motivations and challenges to prescribing; 3) New options and opportunities for care but not enough to 'win the arms race'; 4) Lack of implementation support and resources; 5) Limited infrastructure. CONCLUSIONS: BC's implementation of RMG was limited in scope, prescriber uptake and geographic scale up. Systemic, organizational and individual barriers and facilitators point to the importance of engaging professional regulatory colleges, implementation planning and organizational infrastructure to ensure effective implementation and adaptation to context.


Subject(s)
COVID-19 , Humans , British Columbia/epidemiology , COVID-19/epidemiology , Drug Overdose/drug therapy , Analgesics, Opioid/poisoning , Analgesics, Opioid/adverse effects , Substance-Related Disorders/epidemiology , Benzodiazepines/supply & distribution , Benzodiazepines/therapeutic use , Benzodiazepines/poisoning , Qualitative Research , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL