Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Open Heart ; 11(2)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097328

ABSTRACT

BACKGROUND: Guidelines recommend the use of risk scores to select patients for further investigation after myocardial infarction has been ruled out but their utility to identify those with coronary artery disease is uncertain. METHODS: In a prospective cohort study, patients with intermediate high-sensitivity cardiac troponin I concentrations (5 ng/L to sex-specific 99th percentile) in whom myocardial infarction was ruled out were enrolled and underwent coronary CT angiography (CCTA) after hospital discharge. History, ECG, Age, Risk factors, Troponin (HEART), Emergency Department Assessment of Chest Pain Score (EDACS), Global Registry of Acute Coronary Event (GRACE), Thrombolysis In Myocardial Infarction (TIMI), Systematic COronary Risk Evaluation 2 and Pooled Cohort Equation risk scores were calculated and the odds ratio (OR) and diagnostic performance for obstructive coronary artery disease were determined using established thresholds. RESULTS: Of 167 patients enrolled (64±12 years, 28% female), 29.9% (50/167) had obstructive coronary artery disease. The odds of having obstructive disease were increased for all scores with the lowest and highest increase observed for an EDACS score ≥16 (OR 2.2 (1.1-4.6)) and a TIMI risk score ≥1 (OR 12.9 (3.0-56.0)), respectively. The positive predictive value (PPV) was low for all scores but was highest for a GRACE score >88 identifying 39% as high risk with a PPV of 41.9% (30.4-54.2%). The negative predictive value (NPV) varied from 77.3% to 95.2% but was highest for a TIMI score of 0 identifying 26% as low risk with an NPV of 95.2% (87.2-100%). CONCLUSIONS: In patients with intermediate cardiac troponin concentrations in whom myocardial infarction has been excluded, clinical risk scores can help identify patients with and without coronary artery disease, although the performance of established risk thresholds is suboptimal for utilisation in clinical practice. TRIAL REGISTRATION NUMBER: NCT04549805.


Subject(s)
Acute Coronary Syndrome , Biomarkers , Coronary Angiography , Coronary Artery Disease , Troponin I , Humans , Female , Male , Middle Aged , Prospective Studies , Risk Assessment/methods , Biomarkers/blood , Coronary Artery Disease/blood , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/epidemiology , Aged , Troponin I/blood , Risk Factors , Computed Tomography Angiography , Predictive Value of Tests , Prognosis
2.
Cardiovasc Res ; 119(1): 136-154, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36082978

ABSTRACT

AIM: Myocardial infarction remains the leading cause of heart failure. The adult human heart lacks the capacity to undergo endogenous regeneration. New blood vessel growth is integral to regenerative medicine necessitating a comprehensive understanding of the pathways that regulate vascular regeneration. We sought to define the transcriptomic dynamics of coronary endothelial cells following ischaemic injuries in the developing and adult mouse and human heart and to identify new mechanistic insights and targets for cardiovascular regeneration. METHODS AND RESULTS: We carried out a comprehensive meta-analysis of integrated single-cell RNA-sequencing data of coronary vascular endothelial cells from the developing and adult mouse and human heart spanning healthy and acute and chronic ischaemic cardiac disease. We identified species-conserved gene regulatory pathways aligned to endogenous neovascularization. We annotated injury-associated temporal shifts of the endothelial transcriptome and validated four genes: VEGF-C, KLF4, EGR1, and ZFP36. Moreover, we showed that ZFP36 regulates human coronary endothelial cell proliferation and defined that VEGF-C administration in vivo enhances clonal expansion of the cardiac vasculature post-myocardial infarction. Finally, we constructed a coronary endothelial cell meta-atlas, CrescENDO, to empower future in-depth research to target pathways associated with coronary neovascularization. CONCLUSION: We present a high-resolution single-cell meta-atlas of healthy and injured coronary endothelial cells in the mouse and human heart, revealing a suite of novel targets with great potential to promote vascular regeneration, and providing a rich resource for therapeutic development.


Subject(s)
Myocardial Infarction , Vascular Endothelial Growth Factor C , Adult , Animals , Mice , Humans , Vascular Endothelial Growth Factor C/metabolism , Endothelial Cells/metabolism , Myocytes, Cardiac/metabolism , Heart/physiology , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Endothelium/metabolism , Neovascularization, Pathologic/metabolism , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL