Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Cell ; 187(20): 5698-5718.e26, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39265577

ABSTRACT

DNA repair and autophagy are distinct biological processes vital for cell survival. Although autophagy helps maintain genome stability, there is no evidence of its direct role in the repair of DNA lesions. We discovered that lysosomes process topoisomerase 1 cleavage complexes (TOP1cc) DNA lesions in vertebrates. Selective degradation of TOP1cc by autophagy directs DNA damage repair and cell survival at clinically relevant doses of topoisomerase 1 inhibitors. TOP1cc are exported from the nucleus to lysosomes through a transient alteration of the nuclear envelope and independent of the proteasome. Mechanistically, the autophagy receptor TEX264 acts as a TOP1cc sensor at DNA replication forks, triggering TOP1cc processing by the p97 ATPase and mediating the delivery of TOP1cc to lysosomes in an MRE11-nuclease- and ATR-kinase-dependent manner. We found an evolutionarily conserved role for selective autophagy in DNA repair that enables cell survival, protects genome stability, and is clinically relevant for colorectal cancer patients.


Subject(s)
Autophagy , Cell Survival , DNA Damage , DNA Repair , DNA Topoisomerases, Type I , Lysosomes , Membrane Proteins , Animals , Humans , Mice , Ataxia Telangiectasia Mutated Proteins/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , DNA Replication , DNA Topoisomerases, Type I/metabolism , Genomic Instability , Lysosomes/metabolism , MRE11 Homologue Protein/metabolism , Topoisomerase I Inhibitors/pharmacology , Membrane Proteins/genetics , Membrane Proteins/metabolism
2.
Front Genet ; 10: 780, 2019.
Article in English | MEDLINE | ID: mdl-31552092

ABSTRACT

Lennert lymphoma (LL) is a lymphoepithelioid morphological variant of peripheral T-cell lymphoma-not otherwise specified (PTCL/NOS), clinically characterized by better prognosis if compared with other PTCL/NOS. Although well characterized as far as morphology and phenotype are concerned, very little is known regarding its molecular features. In this study, we investigated the transcriptional profile of this tumor aiming 1) to identify its cellular counterparts; 2) to better define its relation with other PTCLs-and, therefore, its possible position in lymphoma classification; and 3) to define pathogenetic mechanisms, possibly unveiling novel therapeutic targets. To address these issues, we performed gene and microRNA expression profiling on LL and other PTCL/NOS cases; we identified different genes and microRNAs that discriminated LL from other PTCL/NOS. Particularly, LL revealed a molecular signature significantly enriched in helper function and clearly distinguishable from other PTCL/NOS. Furthermore, PI3K/Akt/mTOR pathway emerged as novel potential therapeutic target. In conclusion, based on the already known particular morphological and clinical features, the new molecular findings support the hypothesis that LL might be classified as a separate entity. Preclinical and clinical studies testing the efficacy of PI3K/MTOR inhibitors in this setting are warranted.

3.
Adv Physiol Educ ; 40(3): 410-7, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27503902

ABSTRACT

This laboratory activity is designed to teach students how to measure forearm muscle blood flow (FBF) to describe the mechanisms of peripheral blood flow thermal regulation in healthy subjects. The cold pressor test (CPT) is the clinical procedure used in the experiment to induce arterial vasoconstriction. Strain-gauge plethysmography is applied on the patient's forearm to noninvasive monitor vasoconstriction effects on local blood perfusion and physiological parameters such as blood pressure (BP) and heart rate (HR). Patients with an altered peripheral vascular resistance (e.g., in hypertension) have different responses to the CPT from healthy subjects. To date, experimental evidence remains unexplained, as we do not know if the BP and HR increase is caused by a decrease in flow rate or an increase in peripheral vascular resistance during the test. To clarify this situation, we have to quantify the parameter we assume is being conditioned by the regulatory physiological intervention, i.e., peripheral vascular resistance. Peripheral vascular resistance quantification can be calculated as the ratio between muscle flow and mean arterial pressure. Students will learn how to apply the instrumental procedure to collect and analyze data before, during, and after the CPT and to describe the physiological responses of the peripheral vascular system to external stressors. They will also learn how to distinguish healthy from pathological responses on the basis of how sympathetic nervous system reactions influence the biomechanics of peripheral vessels.


Subject(s)
Blood Pressure Determination/methods , Blood Pressure/physiology , Cold Temperature , Physiology/education , Students, Medical , Blood Flow Velocity , Blood Pressure Determination/instrumentation , Forearm/blood supply , Humans , Plethysmography/methods , Vascular Resistance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL