Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 827
Filter
1.
J Hazard Mater ; 476: 135016, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38986407

ABSTRACT

Formaldehyde (FA) is a hazardous indoor air pollutant with carcinogenic propensity. Oxidation of FA in the dark at low temperature (DLT) is a promising strategy for its elimination from indoor air. In this light, binary manganese-cobalt oxide (0.1 to 5 mol L-1-MnCo2O4) is synthesized and modified in an alkaline medium (0.1-5 mol L-1 potassium hydroxide) for FA oxidation under room temperature (RT) conditions. Accordingly, 1-MnCo2O4 achieves 100 % FA conversion at RT (50 ppm and 7022 h-1 gas hourly space velocity (GHSV)). The catalytic activity of 1-MnCo2O4 is assessed further as a function of diverse variables (e.g., catalyst mass, relative humidity, FA concentration, molecular oxygen (O2) content, flow rate, and time on-stream). In situ diffuse reflectance infrared Fourier-transform spectroscopy confirms that FA molecules are adsorbed onto the active surface sites of 1-MnCo2O4 and oxidized into water (H2O) and carbon dioxide (CO2) through dioxymethylene (DOM) and formate (HCOO-) as the reaction intermediates. According to the density functional theory simulations, the higher catalytic activity of 1-MnCo2O4 can be attributed to the combined effects of its meritful surface properties (e.g., the firmer attachment of FA molecules, lower energy cost of FA adsorption, and lower desorption energy for CO2 and H2O). This work is the first report on the synthesis of alkali (KOH)-modified MnCo2O4 and its application toward the FA oxidative removal at RT in the dark. The results of this study are expected to provide valuable insights into the development of efficient and cost-effective non-noble metal catalysts against indoor FA at DLT.

2.
Clin Genet ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856159

ABSTRACT

Arthrogryposis is a clinical feature defined by congenital joint contractures in two or more different body areas which occurs in between 1/3000 and 1/5000 live births. Variants in multiple genes have been associated with distal arthrogryposis syndromes. Heterozygous variants in MYH3 have been identified to cause the dominantly-inherited distal arthrogryposis conditions, Freeman-Sheldon syndrome, Sheldon-Hall syndrome, and multiple pterygium syndrome. In contrast, MYH3 variants underlie both dominantly and recessively inherited Contractures, Pterygia, and Spondylocarpotarsal Fusion syndromes (CPSFS) which are characterized by extensive bony abnormalities in addition to congenital contractures. Here we report two affected sibs with distal arthrogryposis born to unaffected, distantly related parents. Sequencing revealed that both sibs were homozygous for two ultra-rare MYH3 variants, c.3445G>A (p.Glu1149Lys) and c.4760T>C (p.Leu1587Pro). Sequencing and deletion/duplication analysis of 169 other arthrogryposis genes yielded no other compelling candidate variants. This is the first report of biallelic variants in MYH3 being implicated in a distal arthrogryposis phenotype without the additional features of CPSFS. Thus, akin to CPSFS, both dominant and recessively inherited distal arthrogryposis can be caused by variants in MYH3.

3.
Int J Parasitol Drugs Drug Resist ; 25: 100554, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38941845

ABSTRACT

Leishmania major is responsible for zoonotic cutaneous leishmaniasis. Therapy is mainly based on the use of antimony-based drugs; however, treatment failures and illness relapses were reported. Although studies were developed to understand mechanisms of drug resistance, the interactions of resistant parasites with their reservoir hosts and vectors remain poorly understood. Here we compared the development of two L. major MON-25 trivalent antimony-resistant lines, selected by a stepwise in vitro Sb(III)-drug pressure, to their wild-type parent line in the natural vector Phlebotomus papatasi. The intensity of infection, parasite location and morphological forms were compared by microscopy. Parasite growth curves and IC50 values have been determined before and after the passage in Ph. papatasi. qPCR was used to assess the amplification rates of some antimony-resistance gene markers. In the digestive tract of sand flies, Sb(III)-resistant lines developed similar infection rates as the wild-type lines during the early-stage infections, but significant differences were observed during the late-stage of the infections. Thus, on day 7 p. i., resistant lines showed lower representation of heavy infections with colonization of the stomodeal valve and lower percentage of metacyclic promastigote forms in comparison to wild-type strains. Observed differences between both resistant lines suggest that the level of Sb(III)-resistance negatively correlates with the quality of the development in the vector. Nevertheless, both resistant lines developed mature infections with the presence of infective metacyclic forms in almost half of infected sandflies. The passage of parasites through the sand fly guts does not significantly influence their capacity to multiply in vitro. The IC50 values and molecular analysis of antimony-resistance genes showed that the resistant phenotype of Sb(III)-resistant parasites is maintained after passage through the sand fly. Sb(III)-resistant lines of L. major MON-25 were able to produce mature infections in Ph. papatasi suggesting a possible circulation in the field using this vector.

4.
Sci Total Environ ; 946: 174110, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909789

ABSTRACT

Hydrothermal carbonization (HTC) of single plastic polymers such as polyethylene terephthalate (PET) and polystyrene (PS) has not yet been explored on a large scale, particularly their thermal behavior, chemical transformations under subcritical conditions, and the energy properties of the resultant hydrochar. This study investigated these aspects by employing techniques, such as thermogravimetric analysis (TGA), Fourier transformed infrared spectroscopy (FTIR), elemental and calorific analysis. The results show that PET hydrochar has a superior energy densification (1.37) and energy yield (89 %) compared to PS hydrochar (1.13, 54 %). Hydrothermal carbonization modifies the chemical structure of the polymers by increasing the number of carbonyl groups (CO) in PET and forming new ones in PS, and by enhancing hydroxyl groups (OH) in PET while retaining them in PS. Both materials preserve their aromatic and aliphatic structures, with the introduction of alkenes groups (CC) in the PET hydrochar. PET hydrochar begins to decompose at lower temperatures (150-270 °C) than PS hydrochar (242-283 °C) but reaches higher peak temperatures (420-585 °C vs. 390-470 °C), with both types achieving similar burnout temperatures (650-800 °C). PET hydrochar recorded a higher activation energy (121-126 kJ/mol) than PS hydrochar (67-74 kJ/mol) with the Mampel first-order reaction model as the best fit.

5.
ACS Appl Mater Interfaces ; 16(26): 33669-33687, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38912904

ABSTRACT

To learn more about the behavior of amine (NH2)-functionalized metal-organic framework (MOF)-derived noble metal catalysts in the removal of aromatic volatile organic compounds in air, benzene oxidation at low temperatures has been investigated using 0.2-, 0.8-, and 1.5%-platinum (Pt)/Universitetet i Oslo (UiO)-66-NH2. The benzene conversion (XB) of x%-Pt/UiO-66-NH2-R under dry conditions (175 °C) was 23% (x = 0.2%) < 52% (x = 0.8%) < 100% (x = 1.5%): 'R' suffix denotes reduction pretreatment using a hydrogen (10 vol %) and nitrogen mixture at 300 °C for the generation of metallic Pt (Pt0) sites and simultaneous partial MOF decomposition into carbon- and nitrogen-loaded zirconium dioxide. The prominent role of reduction pretreatment was apparent in benzene oxidation as 1.5%-Pt/UiO-66-NH2 did not exhibit catalytic activity below 175 °C (dry condition). The promotional role of moisture in benzene oxidation by 1.5%-Pt/UiO-66-NH2-R was evident with a rise in the steady-state reaction rate (r) at 110 °C (21 kPa molecular oxygen (O2)) from 1.3 × 10-3 to 5.0 × 10-3 µmol g-1 s-1 as the water (H2O) partial pressure increased from 0 to 1.88 kPa. In contrast, the activity was lowered with increasing RH due to catalyst poisoning by excess moisture (r (110 °C) of 6.6 × 10-04 µmol g-1 s-1 at 2.83 kPa H2O (21 kPa O2)). Kinetic modeling suggests that XB proceeds through the Langmuir-Hinshelwood mechanism on the Pt/UiO-66-NH2-R surface (dissociative O2 chemisorption and the involvement of two oxygen species in benzene oxidation). According to the density functional theory simulation, the carbon and nitrogen impurities are to make the first XB step (i.e., hydrogen migration from the benzene molecule to the substrate) energetically favorable. The second hydrogen atom from the benzene molecule is also extracted effectively, while the oxygen derived from O2 facilitates further XB. The Pt0 sites dissociate the O2 and H2O molecules, while the product of the latter, i.e., free hydrogen and hydroxyl, makes the subsequent XB steps energetically favorable.

7.
Eur J Hum Genet ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914686

ABSTRACT

Haploinsufficiency of the short stature homeobox-containing (SHOX) gene leads to a phenotypic spectrum ranging from Leri-Weill dyschondrosteosis (LWD) to SHOX-deficient short stature. SHOX nullizygosity leads to Langer mesomelic dysplasia. Pathogenic variants can include whole or partial gene deletions or duplications, point mutations within the coding sequence, and deletions of upstream and downstream regulatory elements. Here we report two families: a non-consanguineous family with a deletion downstream of SHOX, in which the homozygous proband presented with isolated Madelung deformity, without LWD or short stature, as well as a 9-year-old girl with Madelung deformities, mesomelia, a dominant family history of Madelung deformity and a heterozygous deletion of the CNE9 region in the 3' downstream region of SHOX. These case reports provide additional information on the effects of 3' downstream deletions of SHOX, by demonstrating the limited phenotype associated with the recurrent 47.5 kb deletion in a homozygous state and the CNE9 deletion in a heterozygous state.

8.
Clin Genet ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773883

ABSTRACT

Meier-Gorlin syndrome (MGORS) is an autosomal recessive disorder characterized by short stature, microtia, and patellar hypoplasia, and is caused by pathogenic variants of cellular factors involved in the initiation of DNA replication. We previously reported that biallelic variants in GINS3 leading to amino acid changes at position 24 (p.Asp24) cause MGORS. Here, we describe the phenotype of a new individual homozygous for the Asp24Asn variant. We also report the clinical characteristics of an individual harboring a novel homozygous GINS3 variant (Ile25Phe) and features suggestive of MGORS. Modification of the corresponding residue in yeast Psf3 (Val9Phe) compromised S phase progression compared to a humanized Psf3 Val9Ile variant. Expression of Psf3 Val9Phe in yeast also caused sensitivity to elevated temperature and the replicative stress-inducing drug hydroxyurea, confirming partial loss of function of this variant in vivo and allowing us to upgrade the classification of this variant. Taken together, these data validate the critical importance of the GINS DNA replication complex in the molecular etiology of MGORS.

9.
Environ Res ; 255: 119186, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38777297

ABSTRACT

The removal of formaldehyde (FA) is vital for indoor air quality management in light of its carcinogenic propensity and adverse environmental impact. A series of copper manganite spinel structures (e.g., CuMn2O4) are prepared using the sol-gel combustion method and treated with reduction or oxidation pretreatment at 300 °C condition. Accordingly, CuMn2O4-O ("O" suffix for oxidation pre-treatment in air) is identified as the best performer to achieve 100% conversion (XFA) of FA (50 ppm) at 90 °C; its performance, if assessed in terms of reaction kinetic rate (r) at XFA = 10%, is 5.02E-03 mmol g-1 h-1. The FA removal performance increases systematically with decreases in flow rate, FA concentration, and relative humidity (RH) or with increases in bed mass. The reaction pathways and intermediates of FA catalytic oxidation on CuMn2O4-A are studied with density functional theory simulations, temperature-programmed characterization experiments, and in-situ diffuse reflectance infrared Fourier transform spectroscopy. The synergistic combination of large quantities of adsorbed oxygen (OA) species and oxidized metal species (e.g., Cu2+) contribute to the enhanced catalytic performance of CuMn2O4-O to oxidize FA into CO2 with the reaction intermediates of H2CO2 (DOM), HCOO-, and CO. The present study is expected to provide valuable insights into the thermocatalytic oxidation of FA over spinel CuMn2O4 materials and their catalytic performances in relation to the key process variables.


Subject(s)
Copper , Formaldehyde , Formaldehyde/chemistry , Copper/chemistry , Catalysis , Air Pollutants/chemistry , Air Pollutants/analysis , Oxidation-Reduction , Temperature , Cold Temperature , Aluminum Oxide , Magnesium Oxide
10.
J Med Genet ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697782

ABSTRACT

BACKGROUND: Triokinase and FMN cyclase (TKFC) is a bifunctional enzyme involved in fructose metabolism. Triokinase catalyses the phosphorylation of fructose-derived glyceraldehyde (GA) and exogenous dihydroxyacetone (DHA), while FMN cyclase generates cyclic FMN. TKFC regulates the antiviral immune response by interacting with IFIH1 (MDA5). Previously reported pathogenic variants in TKFC are associated with either a multisystemic disease or isolated hypotrichosis with loose anagen hairs. METHODS: Whole-exome sequencing identified a homozygous novel variant in TKFC (c.1624G>A; p.Gly542Arg) in an individual with a complex primary immunodeficiency disorder. The variant was characterised using enzymatic assays and yeast studies of mutant recombinant proteins. RESULTS: The individual presented with chronic active Epstein-Barr virus disease and multiple bacterial and viral infections. Clinical investigations revealed hypogammaglobulinaemia, near absent natural killer cells and decreased memory B cells. Enzymatic assays showed that this variant displayed defective DHA and GA kinase activity while maintaining FMN cyclase activity. An allogenic bone marrow transplantation corrected the patient's immunodeficiency. CONCLUSION: Our report suggests that TKFC may have a role in the immunological system. The pathological features associated with this variant are possibly linked with DHA/GA kinase inactivation through a yet an unknown mechanism. This report thus adds a possible new pathway of immunometabolism to explore further.

11.
Front Microbiol ; 15: 1368523, 2024.
Article in English | MEDLINE | ID: mdl-38741748

ABSTRACT

Saline-alkaline lakes often shelter high biomasses despite challenging conditions, owing to the occurrence of highly adapted phototrophs. Dziani Dzaha (Mayotte) is one such lake characterized by the stable co-dominance of the cyanobacterium Limnospira platensis and the picoeukaryote Picocystis salinarum throughout its water column. Despite light penetrating only into the uppermost meter, the prevailing co-dominance of these species persists even in light- and oxygen-deprived zones. Here, a depth profile of phototrophs metatranscriptomes, annotated using genomic data from isolated strains, is employed to identify expression patterns of genes related to carbon processing pathways including photosynthesis, transporters and fermentation. The findings indicate a prominence of gene expression associated with photosynthesis, with a peak of expression around 1 m below the surface, although the light intensity is very low and only red and dark red wavelengths can reach it, given the very high turbidity linked to the high biomass of L. platensis. Experiments on strains confirmed that both species do grow under these wavelengths, at rates comparable to those obtained under white light. A decrease in the expression of photosynthesis-related genes was observed in L. platensis with increasing depth, whereas P. salinarum maintained a very high pool of psbA transcripts down to the deepest point as a possible adaptation against photodamage, in the absence and/or very low levels of expression of genes involved in protection. In the aphotic/anoxic zone, expression of genes involved in fermentation pathways suggests active metabolism of reserve or available dissolved carbon compounds. Overall, L. platensis seems to be adapted to the uppermost water layer, where it is probably maintained thanks to gas vesicles, as evidenced by high expression of the gvpA gene. In contrast, P. salinarum occurs at similar densities throughout the water column, with a peak in abundance and gene expression levels which suggests a better adaptation to lower light intensities. These slight differences may contribute to limited inter-specific competition, favoring stable co-dominance of these two phototrophs.

12.
J Colloid Interface Sci ; 665: 1029-1042, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579386

ABSTRACT

Formaldehyde (FA), a carcinogenic oxygenated volatile organic compound, is present ubiquitously in indoor air. As such, it is generally regarded as a critical target for air quality management. The oxidative removal of FA under dark and room-temperature (RT) conditions is of practical significance. A series of ternary nickel-cobalt-manganese oxide-supported platinum catalysts (Pt/NiCoMnO4) have been synthesized for FA oxidative removal at RT in the dark. Their RT conversion values for 50 ppm FA (XFA) at 5,964 h-1 gas hourly space velocity (GHSV) decrease in the following order: 1 wt% Pt/NiCoMnO4 (100 %) > 0.5 wt% Pt/NiCoMnO4 (25 %) > 0.05 wt% Pt/NiCoMnO4 (14 %) > NiCoMnO4 (6 %). The catalytic performance of 1 wt% Pt/NiCoMnO4 has been examined further under the control of various process variables (e.g., catalyst mass, flow rate, relative humidity, FA concentration, time on stream, and molecular oxygen content). The catalytic oxidation of FA at low temperatures (e.g., RT and 60 °C) is accounted for by Langmuir-Hinshelwood mechanism (single-site competitive-adsorption), while Mars van Krevelen kinetics is prevalent at higher temperatures. In situ diffuse-reflectance infrared Fourier-transform spectroscopy reveals that FA oxidation proceeds through a series of reaction intermediates such as DOM, HCOO-, and CO32-. Based on the density functional theory simulations, the unique electronic structures of the nearest surface atoms (platinum and nickel) are suggested to be responsible for the superior catalytic activity of Pt/NiCoMnO4.

13.
J Phys Chem Lett ; 15(15): 4151-4157, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38597408

ABSTRACT

The ability to control the location of nanoscale objects in liquids is essential for fundamental and applied research from nanofluidics to molecular biology. To overcome their random Brownian motion, the electrostatic fluid trap creates local minima in potential energy by shaping electrostatic interactions with a tailored wall topography. However, this strategy is inherently static; once fabricated, the potential wells cannot be modulated. Here, we propose and experimentally demonstrate that such a trap can be controlled through a buried gate electrode. We measure changes in the average escape times of nanoparticles from the traps to quantify the induced modulations of 0.7 kBT in potential energy and 50 mV in surface potential. Finally, we summarize the mechanism in a parameter-free predictive model, including surface chemistry and electrostatic fringing, that reproduces the experimental results. Our findings open a route toward real-time controllable nanoparticle traps.

14.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675640

ABSTRACT

Chalcones are polyphenols that belong to the flavonoids family, known for their broad pharmacological properties. They have thus attracted the attention of chemists for their obtention and potential activities. In our study, a library of compounds from 2'-hydroxychalcone's family was first synthesized. A one-step mechanochemical synthesis via Claisen-Schmidt condensation reaction under ball mill conditions was studied, first in a model reaction between a 5'-fluoro-2'-hydroxyacetophenone and 3,4-dimethoxybenzaldehyde. The reaction was optimized in terms of catalysts, ratio of reagents, reaction time, and influence of additives. Among all assays, we retained the best one, which gave the highest yield of 96% when operating in the presence of 1 + 1 eq. of substituted benzaldehyde and 2 eq. of KOH under two grinding cycles of 30 min. Thus, this protocol was adopted for the synthesis of the selected library of 2'-hydroxychalcones derivatives. The biological activities of 17 compounds were then assessed against Plasmodium falciparum, Leishmania donovani parasite development, as well as IGR-39 melanoma cell lines by inhibiting their viability and proliferation. Compounds 6 and 11 are the most potent against L. donovani, exhibiting IC50 values of 2.33 µM and 2.82 µM, respectively, better than the reference drug Miltefosine (3.66 µM). Compound 15 presented the most interesting antimalarial activity against the 3D7 strain, with IC50 = 3.21 µM. Finally, chalcone 12 gave the best result against IGR-39 melanoma cell lines, with an IC50 value of 12 µM better than the reference drug Dacarbazine (IC50 = 25 µM).


Subject(s)
Chalcones , Plasmodium falciparum , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Humans , Cell Line, Tumor , Plasmodium falciparum/drug effects , Leishmania donovani/drug effects , Leishmania donovani/growth & development , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Molecular Structure
15.
Molecules ; 29(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38611899

ABSTRACT

2,6-Diaryl-4H-tetrahydro-thiopyran-4-ones and corresponding sulfoxide and sulfone derivatives were designed to lower the major toxicity of their parent anti-kinetoplatidal diarylideneacetones through a prodrug effect. Novel diastereoselective methodologies were developed and generalized from diarylideneacetones and 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones to allow the introduction of a wide substitution profile and to prepare the related S-oxides. The in vitro biological activity and selectivity of diarylideneacetones, 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones, and their S-sulfoxide and sulfone metabolites were evaluated against Trypanosoma brucei brucei, Trypanosoma cruzi, and various Leishmania species in comparison with their cytotoxicity against human fibroblasts hMRC-5. The data revealed that the sulfides, sulfoxides, and sulfones, in which the Michael acceptor sites are temporarily masked, are less toxic against mammal cells while the anti-trypanosomal potency was maintained against T. b. brucei, T. cruzi, L. infantum, and L. donovani, thus confirming the validity of the prodrug strategy. The mechanism of action is proposed to be due to the involvement of diarylideneacetones in cascades of redox reactions involving the trypanothione system. After Michael addition of the dithiol to the double bonds, resulting in an elongated polymer, the latter-upon S-oxidation, followed by syn-eliminations-fragments, under continuous release of reactive oxygen species and sulfenic/sulfonic species, causing the death of the trypanosomal parasites in the micromolar or submicromolar range with high selectivity indexes.


Subject(s)
Chagas Disease , Prodrugs , Pyrans , Safrole/analogs & derivatives , Sulfhydryl Compounds , Humans , Animals , Oxides , Oxidation-Reduction , Mammals
16.
Chemosphere ; 358: 142118, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677616

ABSTRACT

A comprehensive kinetic model has been developed to address the factors and processes governing the photocatalytic removal of gaseous ethanol by using ZnO loaded in a prototype air purifier. This model simultaneously tracks the concentrations of ethanol and acetaldehyde (as its primary oxidation product) in both gas phase and on the catalyst surface. It accounts for reversible adsorption of both compounds to assign kinetic reaction parameters for different degradation pathways. The effects of oxygen vacancies on the catalyst have been validated through the comparative assessment on the catalytic performance of commercial ZnO before and after the reduction pre-treatment (10% H2/Ar gas at 500 °C). The influence of humidity has also been assessed by partitioning the concentrations of water molecules across the gas phase and catalyst surface interface. Given the significant impact of adsorption on photocatalytic processes, the beginning phases of all experiments (15 min in the dark) are integrated into the model. Results showcase a notable decrease in the adsorption removal of ethanol and acetaldehyde with an increase in relative humidity from 5% to 75%. The estimated number of active sites, as determined by the model, increases from 7.34 10-6 in commercial ZnO to 8.86 10-6 mol gcat-1 in reduced ZnO. Furthermore, the model predicts that the reaction occurs predominantly on the catalyst surface while only 14% in the gas phase. By using quantum yield calculations, the optimal humidity level for photocatalytic degradation is identified as 25% with the highest quantum yield of 6.98 10-3 (commercial ZnO) and 10.41 10-3 molecules photon-1 (reduced ZnO) catalysts.


Subject(s)
Acetaldehyde , Ethanol , Humidity , Oxygen , Zinc Oxide , Zinc Oxide/chemistry , Acetaldehyde/chemistry , Kinetics , Ethanol/chemistry , Catalysis , Oxygen/chemistry , Adsorption , Air Pollutants/chemistry , Oxidation-Reduction , Models, Chemical
17.
Am J Hum Genet ; 111(4): 761-777, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38503299

ABSTRACT

Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.


Subject(s)
Epilepsy , Mutation, Missense , Neurodevelopmental Disorders , Shab Potassium Channels , Animals , Humans , Action Potentials , Epilepsy/genetics , Neurons , Oocytes , Xenopus laevis , Shab Potassium Channels/genetics , Shab Potassium Channels/metabolism , Neurodevelopmental Disorders/genetics
18.
Phys Chem Chem Phys ; 26(4): 3168-3183, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38192244

ABSTRACT

This study focuses on the mutual interaction of substituents in the nucleophile and substrate - cross interaction constant, ρXY, in the uncatalyzed aminolysis by substituting pyridine with phenyl carbonyl isothiocyanate. The mechanism was found to be a stepwise process with a rate-limiting breakdown of the -NCS leaving group. This stepwise reaction mechanism considers the cross-interaction constant (CIC) with rate-limiting breakdown of tetrahedral intermediate in gas and solvent phases. The corresponding Hammett coefficients are related to the substituents associated with (1) the nucleophiles (X), ρX (-1.93 to -6.54 for the gas phase and 10.5 to 18.9 in the solvent model), and with (2) the substituents associated with the phenyl ring of the substrate (Y), ρY (0.41-3.48 for the gas phase and 1.83 to -10.70 for the solvent model). It also includes the Brønsted coefficient with X, ßX (0.11-1.52 for the gas phase and -2.57 to 3.96 for the solvent model), and CIC values, ρXY (0.69 for the gas phase and 0.87 for the solvent model). In this work, the NBO analysis, reaction potential, reaction electronic flux (REF), dual descriptor, and the structure-energy relationships were considered in interpreting the mechanistic criteria.

19.
Nat Commun ; 15(1): 467, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212606

ABSTRACT

Dietary restriction (DR) delays aging, but the mechanism remains unclear. We identified polymorphisms in mtd, the fly homolog of OXR1, which influenced lifespan and mtd expression in response to DR. Knockdown in adulthood inhibited DR-mediated lifespan extension in female flies. We found that mtd/OXR1 expression declines with age and it interacts with the retromer, which regulates trafficking of proteins and lipids. Loss of mtd/OXR1 destabilized the retromer, causing improper protein trafficking and endolysosomal defects. Overexpression of retromer genes or pharmacological restabilization with R55 rescued lifespan and neurodegeneration in mtd-deficient flies and endolysosomal defects in fibroblasts from patients with lethal loss-of-function of OXR1 variants. Multi-omic analyses in flies and humans showed that decreased Mtd/OXR1 is associated with aging and neurological diseases. mtd/OXR1 overexpression rescued age-related visual decline and tauopathy in a fly model. Hence, OXR1 plays a conserved role in preserving retromer function and is critical for neuronal health and longevity.


Subject(s)
Aging , Nervous System Diseases , Humans , Female , Aging/genetics , Longevity/genetics , Neurons/metabolism , Nervous System Diseases/metabolism , Brain/metabolism , Caloric Restriction , Mitochondrial Proteins/metabolism
20.
Chemosphere ; 350: 141114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184080

ABSTRACT

MXenes are an emerging class of two-dimensional (2D) inorganic materials with great potential for versatile applications such as adsorption and catalysis. Here, we describe the synthesis of a platinized titanium carbide MXene (Pt@Ti3C2) catalyst with varying amounts of platinum (0.1%-2 wt.%) for the low-temperature oxidation of benzene, an aromatic volatile organic compound often found in industrial flue gas. A 1% formulation of Pt@Ti3C2-R allowed near-complete (97%) oxidation of benzene to CO2 at 225 °C with a steady-state reaction rate (r) of 0.119 mol g-1·h-1. This low-temperature catalytic oxidation reaction was promoted by an increase in the lattice oxygen (O*)/Pt2+ species (active sites) of 1%Pt@Ti3C2-R from 45.3/34.6% to 71.0/61.1% through pre-thermal reduction under H2 flow, as revealed by X-ray photoelectron spectroscopy, temperature-programmed reduction, and in situ diffuse reflectance infrared Fourier transform spectroscopy analyses. The cataltyic activity of 1% Pt@Ti3C2-R against benzene was assessed under the control of the key process variables (e.g., catalyst mass, flow rate, benzene concentration, relative humidity, and time-on-stream) to help optimize the oxidation reaction process. The results provide new insights into the use of platinum-based 2D MXene catalysts for low-temperature oxidative removal of benzene from the air.


Subject(s)
Benzene , Nitrites , Platinum , Transition Elements , Temperature , Benzene/chemistry , Platinum/chemistry , Oxidation-Reduction , Titanium/chemistry , Catalysis , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL