Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
Gut Microbes ; 14(1): 2149023, 2022.
Article in English | MEDLINE | ID: mdl-36420990

ABSTRACT

The mechanisms by which early microbial colonizers of the neonate influence gut development are poorly understood. Bacterial bile salt hydrolase (BSH) acts as a putative colonization factor that influences bile acid signatures and microbe-host signaling pathways and we considered whether this activity can influence infant gut development. In silico analysis of the human neonatal gut metagenome confirmed that BSH enzyme sequences are present as early as one day postpartum. Gastrointestinal delivery of cloned BSH to immature gnotobiotic mice accelerated shortening of the colon and regularized gene expression profiles, with monocolonised mice more closely resembling conventionally raised animals. In situ expression of BSH decreased markers of cell proliferation (Ki67, Hes2 and Ascl2) and strongly increased expression of ALPI, a marker of cell differentiation and barrier function. These data suggest an evolutionary paradigm whereby microbial BSH activity potentially influences bacterial colonization and in-turn benefits host gastrointestinal maturation.


Subject(s)
Gastrointestinal Microbiome , Transcriptome , Female , Humans , Mice , Animals , Amidohydrolases/genetics , Amidohydrolases/metabolism , Gastrointestinal Tract/microbiology , Bacteria/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL