Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Adv Pharmacol Pharm Sci ; 2024: 2585922, 2024.
Article in English | MEDLINE | ID: mdl-38938595

ABSTRACT

Gonococcal infections present a notable public health issue, and the major approach for treatment involves using ß-lactam antibiotics that specifically target penicillin-binding protein 2 (PBP2) in Neisseria gonorrhoeae. This study examines the influence of flavonoids, namely, rutin, on the structural changes of PBP2 in both penicillin-resistant (FA6140) and penicillin-susceptible (FA19) strains. The research starts by clarifying the structural effects of certain mutations, such as the insertion of an aspartate residue at position 345 (Asp-345a), in the PBP2. The strain FA6140, which is resistant to penicillin, shows specific changes that lead to a decrease in penicillin binding. These mutations, namely, P551S and F504L, have a significant impact on the pace at which acylation occurs and the stability of the strain under high temperatures. Molecular docking analyses investigate the antibacterial activities of rutin and other phytocompounds, emphasising rutin's exceptional binding affinity and its potential as an inhibitor of PBP2. Quercetin and protocatechuic acid have encouraging antibacterial effectiveness, with quercetin displaying characteristics similar to those of drugs. Molecular dynamics simulations offer a detailed comprehension of the interactions between flavonoids and PBP2, highlighting rutin's exceptional antioxidant effects and strong affinity for the substrate binding site. The study's wider ramifications pertain to the pressing requirement for antiviral treatments, namely, in the context of the ongoing COVID-19 epidemic. Flavonoids have a strong affinity for binding to PBP2, indicating their potential as inhibitors to impair cell wall formation in N. gonorrhoeae. Ultimately, this study provides extensive knowledge on the interactions between proteins and ligands, the dynamics of the structure, and the ability of flavonoids to combat penicillin-resistant N. gonorrhoeae bacteria. The verified simulation outcomes establish a basis for the creation of potent inhibitors and medicinal therapies to combat infectious illnesses.

2.
Anal Biochem ; 693: 115584, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38843975

ABSTRACT

Using the amino acid sequences and analysis of selected known structures of Bt Cry toxins, Cry1Ab, Cry1Ac, Cry1Ah, Cry1B, Cry1C and Cry1F we specifically designed immunogens. After antibodies selection, broad-spectrum polyclonal antibodies (pAbs) and monoclonal antibody (namely 1A0-mAb) were obtained from rabbit and mouse, respectively. The produced pAbs displayed broad spectrum activity by recognizing Cry1 toxin, Cry2Aa, Cry2Ab and Cry3Aa with half maximal inhibitory concentration (IC50) values of 0.12-9.86 µg/mL. Similarly, 1A0-mAb showed broad spectrum activity, recognizing all of the above Cry protein (IC50 values of 4.66-20.46 µg/mL) with the exception of Cry2Aa. Using optimizations studies, 1A10-mAb was used as a capture antibody and pAbs as detection antibody. Double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) were established for Cry1 toxin, Cry2Ab and Cry3Aa with the limit of detection (LOD) values of 2.36-36.37 ng/mL, respectively. The present DAS-ELISAs had good accuracy and precisions for the determination of Cry toxin spiked tap water, corn, rice, soybeans and soil samples. In conclusion, the present study has successfully obtained broad-spectrum pAbs and mAb. Furthermore, the generated pAbs- and mAb-based DAS-ELISAs protocol can potentially be used for the broad-spectrum monitoring of eight common subtypes of Bt Cry toxins residues in food and environmental samples.


Subject(s)
Antibodies, Monoclonal , Bacillus thuringiensis Toxins , Endotoxins , Enzyme-Linked Immunosorbent Assay , Hemolysin Proteins , Animals , Enzyme-Linked Immunosorbent Assay/methods , Rabbits , Mice , Endotoxins/analysis , Endotoxins/immunology , Hemolysin Proteins/immunology , Hemolysin Proteins/analysis , Hemolysin Proteins/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/chemistry , Bacterial Proteins/analysis , Bacillus thuringiensis/chemistry , Mice, Inbred BALB C
3.
J Invertebr Pathol ; 205: 108129, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754546

ABSTRACT

Bacillus thuringiensis (Bt) Cry2Aa is a member of the Cry pore-forming, 3-domain, toxin family with activity against both lepidopteran and dipteran insects. Although domains II and III of the Cry toxins are believed to represent the primary specificity determinant through specific binding to cell receptors, it has been proposed that the pore-forming domain I of Cry2Aa also has such a role. Thus, a greater understanding of the functions of Cry2Aa's different domains could potentially be helpful in the rational design of improved toxins. In this work, cry2Aa and its domain fragments (DI, DII, DIII, DI-II and DII-DIII) were subcloned into the vector pGEX-6P-1 and expressed in Escherichia coli. Each protein was recognized by anti-Cry2Aa antibodies and, except for the DII fragment, could block binding of the antibody to Cry2Aa. Cry2Aa and its DI and DI-II fragments bound to brush border membrane vesicles (BBMV) from H. armigera and also to a ca 150 kDa BBMV protein on a far western (ligand) blot. In contrast the DII, DIII and DII-III fragments bound to neither of these. None of the fragments were stable in H. armigera gut juice nor showed any toxicity towards this insect. Our results indicate that contrary to the general model of Cry toxin activity domain I plays a role in the binding of the toxin to the insect midgut.


Subject(s)
Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Moths , Animals , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Bacillus thuringiensis Toxins/metabolism , Bacterial Proteins/metabolism , Moths/metabolism , Moths/microbiology , Binding Sites , Bacillus thuringiensis/metabolism , Pest Control, Biological , Protein Domains , Helicoverpa armigera
4.
Braz J Microbiol ; 55(2): 1053-1063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662152

ABSTRACT

In South Africa, basic healthcare centres treat sexually transmitted infections (STIs) using a syndromic approach. In line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations, a complete study of all randomised controlled trials and surveillance data relevant to N. gonorrhoeae antibiotic resistance was conducted. To discover papers published between 2002 and 2022, searches were undertaken using PubMed, EMBASE and any other relevant databases. This systematic review extracted a total of 463 articles published between 2002 and 2022 from a variety of online research sources. Seven South African provinces were represented in the studies that were assessed. Mpumalanga and the North West Province did not have any studies that described the identification and monitoring of antimicrobial resistance (AMR). This study presents data obtained from a comprehensive analysis of 2140 isolates, in which we examined the presence of one or more antibiotic resistance. Our findings revealed that out of these samples, 1891 isolates exhibited antimicrobial properties; tetracycline was the antimicrobial resistance that was found the most often (30%), followed by ciprofloxacin (19%) and penicillin (17%). The mean of the isolates was 143, the upper 95% mean was 243, and the standard deviation (SD) was 181.6. All microbiological identification and susceptibility testing processes must be standardised and improved so national organisations can monitor AMR. The nation's health community must address all identified areas of concern to avoid AMR.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Gonorrhea , Neisseria gonorrhoeae , South Africa , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/isolation & purification , Gonorrhea/microbiology , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Humans , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
5.
Microorganisms ; 12(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38543621

ABSTRACT

Tuberculosis (TB) is a highly prevalent infectious disease that causes more than 1.5 million deaths a year. More than 25% of TB deaths occur in Africa, and TB is South Africa's leading cause of death, with about 89,000 people dying of it yearly. The emergence of multidrug-resistant TB (MDR-TB) poses a significant threat to health security and could reverse the positive gains already made in the fight against TB. Antibiotic treatments are available, but side effects and the alarming increase in the prevalence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) will compromise the control of the spread and treatment of the disease. A promising option is to employ specialized enzymes encoded by bacteriophages, which destroy bacterial cell membranes and walls to treat tuberculosis. Phage therapy against bacteria is a known treatment that is now reemerging with lytic proteins. These proteins provide an alternative means to treat infectious diseases where conventional antibiotic regimens do not meet the requirements. This review explores and discusses the potential of lytic protein therapy as an antimicrobial strategy against M. tuberculosis and multidrug-resistant tuberculosis.

6.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5179-5192, 2024 07.
Article in English | MEDLINE | ID: mdl-38252299

ABSTRACT

Plasmodium falciparum is the most lethal malaria parasite. Increasing incidences of drug resistance of P. falciparum have prompted the need for discovering new and effective antimalarial compounds with an alternative mode of action. Heat shock protein 90 (PfHsp90) facilitates protein folding and is a promising antimalarial drug target. We have previously reported that iso-mukaadial acetate (IMA) and ursolic acid acetate (UAA) exhibit antimalarial activity. We investigated the abilities of IMA and UAA to bind PfHsp90 by molecular docking and dynamics simulations. The in silico predictions were validated by biochemical assays conducted on recombinant PfHsp90. The interaction between the ligands and PfHsp90 was evaluated using ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FTIR), and surface plasmon resonance (SPR) analysis. The results obtained by docking calculations and MD dynamics simulation predicted that UAA and IMA preferentially bound to PfHsp90 via the N-terminal domain, with UAA binding more stable than IMA. UV-vis-based data suggest that PfHsp90 harbors buried aromatic amino acids, which were exposed in the presence of either IMA or UAA. In addition, data obtained using FTIR suggested that IMA and UAA destabilized the secondary structure of PfHsp90. Of the two compounds, UAA bound to PfHsp90 within the micromolar range based on surface plasmon resonance (SPR)-based binding assay. Furthermore, both compounds disrupted the holdase chaperone function of PfHsp90 as the chaperone failed to suppress heat-induced aggregation of the model proteins, malate dehydrogenase (MDH), luciferase, and citrate synthase in vitro. In addition, both compounds lowered the ATPase activity of PfHsp90. The molecular dynamics simulation analysis indicated that the docked complexes were mostly stable for 100 ns, validating the data obtained through the biochemical assays. Altogether, this study expands the repository of antiplasmodial compounds that have PfHsp90 among their possible targets.


Subject(s)
Acetates , Antimalarials , HSP90 Heat-Shock Proteins , Plasmodium falciparum , Acetates/chemistry , Acetates/pharmacology , Antimalarials/pharmacology , HSP90 Heat-Shock Proteins/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Plasmodium falciparum/drug effects , Protein Binding , Protozoan Proteins/metabolism , Surface Plasmon Resonance , Triterpenes/pharmacology , Triterpenes/chemistry , Ursolic Acid/chemistry
7.
Int J Biol Macromol ; 254(Pt 3): 128034, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972832

ABSTRACT

Bacillus thuringiensis (Bt) Cry toxins have been widely used in the development of genetically modified organisms (GMOs) for pest control. This work aimed to establish more cost effective and broader detection methods for commonly used Cry toxins. Using ligand blot and bio-layer interferometry, we confirmed that a recombinant toxin-binding fragments derived from Helicoverpa armigera cadherin-like protein (HaCad-TBR) could broadly bind Cry1Ab, Cry1Ac, Cry2Aa, and Cry2Ab with the affinity of 0.149, 0.402, 120, and 4.12 nM, respectively. Based on the affinity results, a novel receptor-antibody sandwich assay broadly detecting Cry1A and Cry2 toxins was developed by using HaCad-TBR as capture molecules, and anti-Cry1A/Cry2A polyclonal antibodies (pAbs) as the detection antibodies. The detection limit (LOD) for Cry1Ab, Cry1Ab, Cry2Aa, and Cry2Ab were 5.30, 5.75, 30.83 and 13.70 ng/mL. To distinguish Cry1A and Cry2A toxins in a singular test, anti-Cry1A pAbs and anti-Cry2A pAbs were labelled with different quantum dots (QDs). The LOD for the four toxins by receptor-QDs-pAbs sandwich assay were calculated to be 1.36, 4.71, 17.48, and 7.54 ng/mL, respectively. The two developed methods were validated by spiked rice and corn samples, suggesting they may potentially be used in monitoring and quantifying Cry toxins in food and environment.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Bacillus thuringiensis/metabolism , Endotoxins/metabolism , Cadherins/metabolism , Ligands , Hemolysin Proteins/metabolism , Bacterial Proteins/metabolism , Larva/metabolism , Moths/metabolism
8.
Life (Basel) ; 13(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-38004299

ABSTRACT

The use of traditional medicine in treating a variety of both human and animal infections is ancient and still relevant. This is due to the resistance exhibited by most pathogenic microbial stains to currently-used antibiotics. The current work reports the phytochemistry, ethno-medicinal uses, toxicology, and most important pharmacological activities that validate the use of the plant species in African traditional medicine. Curtisia dendata is used in the treatment of many human and animal infections, including diarrhea, skin and related conditions, sexually transmitted infections, cancer, and a variety of ethno-veterinary infections. Pharmacologically, the plant species exhibited potent antimicrobial activity against a variety of pathogens. Further, both extracts and compounds isolated from the plant species exhibited potent antioxidant, anticancer, anti-parasitic, anti-inflammatory, and other important biological activities. Phytochemically, the plant species possess a variety of compounds, particularly triterpenes, that may well explain the various pharmacological activities of the plant species. The toxicological parameters, antimicrobial activities against microorganisms related to sexually transmitted infections, anti-diabetic effects, and inflammatory properties of the plant species are not well studied and still need to be explored. The biological activities observed validate the use of the plant species in African traditional medicine, particularly in the treatment of pulmonary infections associated with Mycobacterium species, and may well be due to the presence of triterpenes prevalent in the leaves.

9.
Microorganisms ; 11(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894198

ABSTRACT

The emergence of multidrug-resistant pathogens creates public health challenges, prompting a continuous search for effective novel antimicrobials. This study aimed to isolate marine actinomycetes from South Africa, evaluate their in vitro antimicrobial activity against Listeria monocytogenes and Shiga toxin-producing Escherichia coli, and characterize their mechanisms of action. Marine actinomycetes were isolated and identified by 16S rRNA sequencing. Gas chromatography-mass spectrometry (GC-MS) was used to identify the chemical constituents of bioactive actinomycetes' secondary metabolites. Antibacterial activity of the secondary metabolites was assessed by the broth microdilution method, and their mode of actions were predicted using computational docking. While five strains showed antibacterial activity during primary screening, only Nocardiopsis dassonvillei strain SOD(B)ST2SA2 exhibited activity during secondary screening for antibacterial activity. GC-MS identified five major bioactive compounds: 1-octadecene, diethyl phthalate, pentadecanoic acid, 6-octadecenoic acid, and trifluoroacetoxy hexadecane. SOD(B)ST2SA2's extract demonstrated minimum inhibitory concentration and minimum bactericidal concentration, ranging from 0.78-25 mg/mL and 3.13 to > 25 mg/mL, respectively. Diethyl phthalate displayed the lowest bacterial protein-binding energies (kcal/mol): -7.2, dihydrofolate reductase; -6.0, DNA gyrase B; and -5.8, D-alanine:D-alanine ligase. Thus, marine N. dassonvillei SOD(B)ST2SA2 is a potentially good source of antibacterial compounds that can be used to control STEC and Listeria monocytogenes.

10.
Heliyon ; 9(6): e16723, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484259

ABSTRACT

The unique metagenomic, metaviromic libraries and indigenous micro diversity within Southern Africa have the potential for global beneficiation in academia and industry. Microorganisms that flourish at high temperatures, adverse pH conditions, and high salinity are likely to have enzyme systems that function efficiently under those conditions. These attributes afford researchers and industries alternative approaches that could replace existing chemical processes. Thus, a better understanding of African microbial/genetic diversity is crucial for the development of "greener" industries. A concerted drive to exploit the potential locked in biological resources has been previously seen with companies such as Diversa Incorporated and Verenium (Badische Anilin-und SodaFabrik-BASF) both building business models that pioneered the production of high-performance specialty enzymes for a variety of different industrial applications. The market potential and accompanying industry offerings have not been fully exploited in South Africa, nor in Africa at large. Utilization of the continent's indigenous microbial repositories could create long-lasting, sustainable growth in various production sectors, providing economic growth in resource-poor regions. By bolstering local manufacture of high-value bio-based products, scientific and engineering discoveries have the potential to generate new industries which in turn would provide employment avenues for many skilled and unskilled laborers. The positive implications of this could play a role in altering the face of business markets on the continent from costly import-driven markets to income-generating export markets. This review focuses on identifying microbially diverse areas located in South Africa while providing a profile for all associated microbial/genetically derived libraries in this country. A comprehensive list of all the relevant researchers and potential key players is presented, mapping out existing research networks for the facilitation of collaboration. The overall aim of this review is to facilitate a coordinated journey of exploration, one which will hopefully realize the value that South Africa's microbial diversity has to offer.

11.
Biochem Res Int ; 2023: 1777039, 2023.
Article in English | MEDLINE | ID: mdl-37101940

ABSTRACT

In recent years, the potential of pathogenic bacteria to acquire resistance to a variety of antimicrobial drugs has developed significantly due to the indiscriminate exposure of a number of antibiotic compounds. The purpose of this study is to determine the antibacterial capabilities and activities of crude Pleurotus ostreatus extracts against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Neisseria gonorrhoeae (ATCC 49926), and nine multidrug-resistant clinical isolates of Neisseria gonorrhoeae. All of these isolates exhibited sensitivity to azithromycin and ceftriaxone, while the majority of antibiotic resistance was seen against penicillin G, sulphonamide, and ciprofloxacin. Fifty percent of the isolates exhibited absolute resistance to both sulphonamide and ciprofloxacin, whereas 40% of the isolates displayed absolute resistance to penicillin G. The antibacterial activity of P. ostreatus extracts examined in this investigation varied within the same species of microorganisms. Extract B and D, extracted in the presence of 20% wheat bran bagasse and 20% maize flour bagasse, respectively, had exceptional antibacterial activity against all target isolates examined. We observed the lowest concentration of antibacterial agent required to inhibit the target bacteria to be between 1 × 10-3 mg/ml and 1 × 10-6 mg/ml with an estimated probability of 0.30769, a lower 95% confidence interval (CI) of 0.126807, an upper 95% CI of 0.576307, an estimated probability of 0.15385, a lower 95% CI of 0.043258, and an upper 95% CI, respectively. The MBC of 1 × 10-3 mg/ml was seen to eliminate 31% of the target bacteria. This dose was the most inhibitive. The antibacterial activity of all the extracts examined in the current study exhibited some degree of efficacy against both clinical isolates and standard strains. However, the majority of clinically isolated bacteria exhibited greater resistance to the extracts.

12.
Med Sci (Basel) ; 11(2)2023 03 31.
Article in English | MEDLINE | ID: mdl-37092497

ABSTRACT

Antimicrobial drug resistance in Neisseria gonorrhoeae has been documented all over the world. However, the situation in Sub-Saharan Africa has received little attention. It is critical to establish diagnostics and extend surveillance in order to prevent the emergence of illnesses that are resistant to several treatments. Monitoring antimicrobial susceptibility is critically required in order to gather data that may be utilised to produce treatment recommendations that will result in effective therapy, a decrease in gonorrhoeae-related difficulties and transmission, and effective therapy. Government authorities may set research and preventive objectives, as well as treatment recommendations, using data from the Gonococcal Antimicrobial Surveillance Program (GISP). Local and state health authorities may use GISP data to make choices about the allocation of STI prevention services and resources, to guide preventative planning, and to disseminate information about the most successful treatment practices. Using molecular and culture approaches, we investigated the occurrence of antibiotic resistance in isolates from KwaZulu Natal, South Africa. The great majority of gonococcal isolates (48% showed absolute resistance to ciprofloxacin), with penicillin and tetracycline resistance rates of 14% each. Only one of the gonococcal isolates tested positive for azithromycin resistance, with a minimum inhibitory concentration (MIC) of 1.5 µg/mL. Ceftriaxone was effective against all gonococcal isolates tested.


Subject(s)
Anti-Infective Agents , Gonorrhea , Humans , Neisseria gonorrhoeae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Anti-Infective Agents/therapeutic use , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use
13.
Plants (Basel) ; 12(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36840217

ABSTRACT

Aloe arborescens Mill's extracts have been explored for antibacterial and antioxidant efficacies. However, there is limited information on its chemical composition and mechanism of action. The purpose of this study was to assess the chemical composition, antibacterial and antioxidant activities and mechanism of the whole leaf extract of A. arborescens Mill. The phytochemical profile was analysed with gas chromatography mass spectrometry (GC-MS). The antioxidant and antibacterial activities were screened using 1,1diphenyl2picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and micro-dilution assays, respectively. The effects of the extract on the bacterial respiratory chain dehydrogenase, membrane integrity and permeability were analysed using iodonitrotetrazolium chloride, 260 absorbing materials and relative electrical conductivity assays. GC-MS spectrum revealed 26 compounds with N,N'-trimethyleneurea (10.56%), xanthine (8.57%) and 4-hexyl-1-(7-ethoxycarbonylheptyl)bicyclo[4.4.0]deca-2,5,7-triene (7.10%), being the major components. The extract also exhibited antioxidant activity with median concentration (IC50) values of 0.65 mg/mL on DPPH and 0.052 mg/mL on ABTS. The extract exhibited minimum inhibitory concentration (MIC) values ranging from 0.07 to 1.13 mg/mL. The extract inhibited the bacterial growth by destructing the activity of the respiratory chain dehydrogenase, membrane integrity and permeability. Therefore, the leaf extract has the potential to serve as a source of antibacterial and antioxidant compounds.

14.
Anal Biochem ; 664: 115030, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36572217

ABSTRACT

Anti-idiotypic antibodies (Ab2) are valuable tools that can be used for a better understanding of molecular mimicry and the immunological network. In this work, we showed a new application of a phage-displayed alpha-type Ab2 (Ab2α) to improve the sensitivity of an enzyme-linked immunosorbent assay (ELISA) detecting cyanobacterial toxin microcystin-LR (MC-LR). A monoclonal antibody (mAb) against MC-LR was used as an antigen to isolate binders in a camelid nanobody library. After three rounds of panning, three unique clones with strong binding against anti-MC-LR mAbs were isolated. These clones could specifically bind to anti-MC-LR mAbs without influencing mAbs binding with MC-LR, meaning these clones were Ab2αs. Based on the signal amplification effect of phage coat proteins and the non-competitive nature of Ab2α, a novel competitive ELISA method for MC-LR was established with a phage-displayed Ab2α. It showed that the phage-displayed Ab2α greatly enhanced the ELISA signal and sensitivity of the method was improved 3.5-fold to the conventional one. Combining with the optimization of pre-incubation time, the optimized ELISA decreased its limit of detection (LOD) from 4.5 ng/mL to 0.8 ng/mL (5.6-fold improvement). This new application of Ab2α may potentially be employed to improve the sensitivity of immunoassays for other environmental pollutants.


Subject(s)
Bacteriophages , Peptide Library , Enzyme-Linked Immunosorbent Assay/methods , Immunoassay , Antibodies, Monoclonal
15.
BMC Complement Med Ther ; 22(1): 258, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36192707

ABSTRACT

BACKGROUND: The emergence of drug resistance among pathogens has resulted in renewed interest in bioprospecting for natural microbial products. METHODS: This study aimed to bioprospecting endophytic actinobacterium associated with Aloe ferox Mill for its antibacterial activity. Endophytic actinomycetes were isolated from the gel of A. ferox Mill by surface sterilization technique using actinomycete isolation agar. The isolate with a promising antibacterial activity was identified using 16S rRNA sequence analysis. The minimum inhibitory concentration (MIC) of the extract was assessed by the micro-dilution method and its effect on the respiratory chain dehydrogenase (RCD) activity was ascertained by the iodonitrotetrazolium chloride (INT) assay. Fourier transform-infrared spectrophotometer (FTIR) and gas chromatography-mass spectrophotometry (GC-MS) were employed to identify functional groups and the chemical constituents, respectively. RESULTS: The actinobacterium was found to be Streptomyces olivaceus CP016795.1. Its extract displayed noteworthy antibacterial activity (MIC ≤1 mg/mL) against Staphylococcus aureus (ATCC 25925), Bacillus cereus (ATCC 10102), and Escherichia coli (ATCC 25922); and showed an inhibitory effect on the RCD activity. FTIR spectrum displayed hydroxyl, amine, and aromatic groups, and the GC-MS revealed 5-Hydroxymethylfurfural as the main constituent (19.47%). CONCLUSIONS: S. olivaceus CP016795.1 can serve as a potential source of effective antibacterial compounds.


Subject(s)
Actinobacteria , Aloe , Agar/pharmacology , Amines/pharmacology , Anti-Bacterial Agents/pharmacology , Bioprospecting , Chlorides/pharmacology , Escherichia coli , Oxidoreductases/pharmacology , Plant Extracts/pharmacology , RNA, Ribosomal, 16S
16.
Biomed Res Int ; 2022: 8929715, 2022.
Article in English | MEDLINE | ID: mdl-35924267

ABSTRACT

Enzymes play a powerful role as catalysts with high specificity and activity under mild environmental conditions. Significant hurdles, such as reduced solubility, reduced shelf-life, aggregate formation, and toxicity, are still ongoing struggles that scientists come across when purifying recombinant proteins. Over the past three decades, PEGylation techniques have been utilized to significantly overcome low solubility; increased protein stability, shelf-life, and bioactivity; and prevented protein aggregate formation. This review seeks to highlight the impact of PEG-based formulations that are significantly utilized to obtain favourable protein physiochemical properties. The authors further discuss other techniques that can be employed such as coexpression studies and nanotechnology-based skills to obtaining favourable protein physiochemical properties.


Subject(s)
Polyethylene Glycols , Drug Compounding , Polyethylene Glycols/chemistry , Protein Stability , Recombinant Proteins/chemistry , Solubility
17.
J Agric Food Chem ; 70(37): 11510-11519, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-35944165

ABSTRACT

New insecticidal genes and approaches for pest control are a hot research area. In the present study, we explored a novel strategy for the generation of insecticidal proteins. The midgut cadherin of Helicoverpa armigera (H. armigera) was used as a target to screen materials that have insecticidal activity. After three rounds of panning, the phage-displayed human domain antibody B1F6, which not only binds to the H. armigera cadherin CR9-CR11 but also significantly inhibits Cry1Ac toxins from binding to CR9-CR11, was obtained from a phage-displayed human domain antibody (DAb) library. To better analyze the relevant activity of B1F6, soluble B1F6 protein was expressed by Escherichia coli BL21 (DE3). The cytotoxicity assays demonstrated that soluble B1F6 induced Sf9 cell death when expressing H. armigera cadherin on the cell membrane. The insect bioassay results showed that soluble B1F6 protein (90 µg/cm2) caused 49.5 ± 3.3% H. armigera larvae mortality. The midgut histological results showed that soluble B1F6 caused damage to the midgut epithelium of H. armigera larvae. The present study explored a new strategy and provided a basic material for the generation of new insecticidal materials.


Subject(s)
Bacillus thuringiensis , Insecticides , Moths , Animals , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins , Bacterial Proteins/metabolism , Cadherins/genetics , Cadherins/metabolism , Endotoxins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Hemolysin Proteins/metabolism , Humans , Immunoglobulin Fragments/metabolism , Insecticides/chemistry , Larva/genetics , Larva/metabolism , Moths/metabolism
18.
Biochem Res Int ; 2022: 9436614, 2022.
Article in English | MEDLINE | ID: mdl-35795077

ABSTRACT

Pleurotus ostreatus mushroom contains important bioactive compounds and has several biological activities; however, mushroom growing substrates have major influence on chemical and functional characteristics of the mushroom. Hence, the study aimed to evaluate the influence of supplementing mushroom growing substrates with wheat bran (WB) towards yield/productivity, bioactive compounds, and antimicrobial and antioxidant activity of P. ostreatus. The mushroom was cultivated on sugarcane substrates supplemented with increasing levels of WB (0%-20%). The mushroom extracts were screened for bioactive compounds using gas chromatography-mass spectrometry (GC-MS). Antimicrobial activity was carried out using microplate assay, while antioxidant potential was investigated using reducing power assay. The addition of supplements on mushroom growing substrates had an influence on mushroom yield; hence, higher supplementation (18% and 20%) produced higher yield. The GC-MS revealed several bioactive compounds with known activity, such as vitamin E, phenol, fatty acids, and terpenoids. Concentration-dependent antioxidant activity was observed; hence, extracts at higher concentrations gave significantly higher reducing power. The P. ostreatus extract had antimicrobial activity against all the tested organisms, with S. aureus showing high susceptibility to most of the extracts. However, mushrooms grown on bagasse substrates supplemented with 14% (0.02 mg/ml) and 20% WB (0.08 mg/ml) proved to have better antimicrobial activity on Escherichia coli. The difference in susceptibility demonstrates that substrates type and composition could have an influence on bioactive compounds found within mushrooms, also influencing medicinal properties of edible mushroom. Thus, supplementing mushroom growing substrates not only improve yield, but also can contribute to bioactive compounds with medicinal potential.

19.
Protein Pept Lett ; 29(6): 505-513, 2022.
Article in English | MEDLINE | ID: mdl-35657285

ABSTRACT

BACKGROUND: Reagent proteins such as DNA ligases play a central role in the global reagents market. DNA ligases are commonly used and are vital in academic and science research environments. Their major functions include sealing nicks by linking the 5'-phosphorylated end to a 3'-hydroxyl end on the phosphodiester backbone of DNA, utilizing ATP or NADP molecules as an energy source. OBJECTIVE: The current study sought to investigate the role of PEGylation on the biological activity of purified recombinant DNA ligases. METHODS: We produced two recombinant DNA ligases (Ligsv081 and LigpET30) using E. coli expression system and subsequently purified using affinity chromatography. The produced proteins wereconjugated to site specific PEGylation or non-specific PEGylation. FTIR and UV-VIS spectroscopy were used to analyze secondary structures of the PEG conjugated DNA ligases. Differential scanning fluorimetry was employed to assess the protein stability when subjected to various PEGylation conditions. RESULTS: In this study, both recombinant DNA ligases were successfully expressed and purified as homogenous proteins. Protein PEGylation enhanced ligation activity, increased transformation efficiency by 2-foldfor plasmid ligations and reduced the formation of protein aggregates. CONCLUSION: Taken together, site-specific PEGylation can potentially be explored to enhance the biological activity and stability of reagent proteins such as ligases.


Subject(s)
DNA Ligases , Polyethylene Glycols , DNA, Recombinant , Escherichia coli/genetics , Escherichia coli/metabolism , Polyethylene Glycols/chemistry , Proteins/chemistry
20.
Immunol Res ; 70(4): 501-517, 2022 08.
Article in English | MEDLINE | ID: mdl-35554858

ABSTRACT

Mycobacterium tuberculosis (Mtb) is responsible for high mortality rates in many low- and middle-income countries. This infectious disease remains accountable for around 1.4 million deaths yearly. Finding effective control measures against Mtb has become imperative. Vaccination has been regarded as the safe and lasting control measure to curtail the impact of Mtb. This study used the Mtb protein biomarker PE_PGRS17 to design a multi-epitope vaccine. A previous study predicted a strong antigenic property of PE_PGRS17. Immunogenic properties such as antigenicity, toxicity, and allergenicity were predicted for the PE_PGRS17 biomarker, specific B- and T-cell epitope sequences, and the final multiple epitope vaccine (MEV) construct. Algorithmic tools predicted the T- and B-cell epitopes and those that met the immunogenic properties were selected to construct the MEV candidate for predicted vaccine development. The epitopes were joined via linkers and an adjuvant was attached to the terminals of the entire vaccine construct. Immunogenic properties, and physicochemical and structural predictions gave insight into the MEV construct. The assembled vaccine candidate was docked with a receptor and validated using web-based tools. An immune simulation was performed to imitate the immune response after exposure to a dosed administrated predicted MEV subunit. An in silico cloning and codon optimisation gave insight into optimal expression conditions regarding the MEV candidate. In conclusion, the generated MEV construct may potentially emit both cellular and humoral responses which are vital in the development of a peptide-based vaccine against Mtb; nonetheless, further experimental validation is still required.


Subject(s)
Mycobacterium tuberculosis , Vaccinology , Biomarkers , Computational Biology , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/genetics , Molecular Docking Simulation , Vaccines, Subunit
SELECTION OF CITATIONS
SEARCH DETAIL