Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
1.
RSC Adv ; 14(29): 20426-20440, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38946774

ABSTRACT

Superhydrophobic and superoleophilic meshes have gained considerable attention in oil/water separation in recent years. To fabricate such meshes, surface roughness features can be introduced, and the surface free energy can be lowered, preferably, by utilizing low cost, safe, and readily available materials. Herein, we report a novel approach for fabricating a superhydrophobic copper mesh using low-cost carbon nanoparticles embedded within surface micropatterns. To create the micropatterns, a femtosecond laser was employed. The fabricated mesh exhibited a water contact angle of 168.9° and a roll-off angle of only 5.9°. Additionally, the mesh was highly durable and effectively retained its superhydrophobicity during water jet impact and tape-peeling tests. After 50 cycles of the water jet impact test and 5 cycles of the tape-peeling test, the water contact angle reduced by only 0.3° and 2.3°, respectively. When tested for separating n-hexane/water mixtures, the mesh exhibited a separation efficiency of up to 98%. The separation efficiency remained essentially constant after 10 cycles of n-hexane/water separation. It was observed that the surface micropatterns played a significant role in achieving superhydrophobicity and imparting high durability to the mesh. Meshes lacking these laser-induced micropatterns showed higher wettability, lower durability, and decreased separation performance with repeated use.

2.
Front Plant Sci ; 15: 1337560, 2024.
Article in English | MEDLINE | ID: mdl-38988636

ABSTRACT

Over the years, thrips have transitioned from a minor nuisance to a major problem, significantly impacting the yield and quality of cotton. Unmanned aerial vehicles (UAVs) for plant protection have emerged as an effective alternative to traditional pesticide spraying equipment. UAVs offer advantages such as avoiding crop damage and enhancing pesticide deposition on the plants and have become the primary choice for pesticide application in cotton fields. In this study, a 2-year field experiment found that the thrips population in a cotton field in Xinjiang, China, exhibited gradual growth during the early flowering phase, peaking in late July. The thrips population gradually shifted from the lower canopy to the upper canopy as the cotton flowers opened layer by layer. From 09:00 to 11:00 (GMT+8) and 19:00 to 21:00 (GMT+8), thrips mainly flew outside the flowers, while from 17:00 to 19:00 (GMT+8), they mostly inhabited the inner whorls of flowers. The insecticides 10% cyantraniliprole oil dispersion and 10% spinetoram suspension concentrate, sprayed by UAV, had the best control effect on thrips, with 80.51% and 79.22% control effect after 7 days of spraying, respectively. The optimal spraying time for 10% cyantraniliprole oil dispersion was 19:00 (GMT+8), and the control effect on thrips reached 91.16% at 7 days of spraying. During the cotton flowering period, thrips inhabited flowers in the evening and flew outside during the day. The best control effect on thrips was achieved with UAV-sprayed 10% cyantraniliprole oil dispersion at 19:00 (GMT+8).

4.
Polymers (Basel) ; 16(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38932091

ABSTRACT

In the current research, we prepared a polymeric framework, {[Cu(C2O4)(C10H8N2)]·H2O·0.67(CH3OH)]}n (1) (where C2O4 = oxalic acid; C10H8N2 = 2,2-bipyridine), and explored this compound for adsorption of methylene blue (MB) and methyl orange (MO). The crystal structure of the compound consists of a Cu(ox)(bpy) unit connected via oxalate to form a 1D polymeric chain. This polymeric chain has adsorption capacities of 194.0 and 167.3 mg/g for MB and MO, respectively. The removal rate is estimated to be 77.6% and 66.9% for MB and MO, respectively. The plausible mechanisms for adsorption are electrostatic, π-π interaction, and OH-π interaction for dye stickiness. The adsorbent surface exhibits a negative charge that produces the electrostatic interaction, resulting in excellent adsorption efficiency at pH 7 and 8. The pseudo-first-order kinetic model is selected for the adsorption of MB and MO on the adsorbent. The reported compound has remarkable efficiency for sorption of organic dyes and can be useful in wastewater treatment.

5.
Sci Rep ; 14(1): 14653, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918529

ABSTRACT

Sugarcane smut is the most damaging disease that is present almost across the globe, causing mild to severe yield losses depending upon the cultivar types, pathogen races and climatic conditions. Cultivation of smut-resistant cultivars is the most feasible and economical option to mitigate its damages. Previous investigations revealed that there is a scarcity of information on early detection and effective strategies to suppress etiological agents of smut disease due to the characteristics overlapping within species complexes. In this study, 104 sugarcane cultivars were screened by artificial inoculation with homogenate of all possible pathogen races of Sporisorium scitamineum during two consecutive growing seasons. The logistic smut growth pattern and the disease intrinsic rate were recorded by disease growth curve. Variable levels of disease incidence i.e., ranging from 0 to 54.10% were observed among these sugarcane cultivars. Besides, pathogen DNA in plant shoots of all the cultivars was successfully amplified by PCR method using smut-specific primers except 26 cultivars which showed an immune reaction in the field trial. Furthermore, the plant germination and tillering of susceptible sugarcane cultivars were greatly influenced by pathogen inoculation. In susceptible cultivars, S. scitamineum caused a significant reduction in setts germination, coupled with profuse tillering, resulting in fewer millable canes. Correlation analysis demonstrated that there was a positive relationship between reduction in setts germination and increase in the number of tillers. The present study would be helpful for the evaluation of smut resistance in a wide range of sugarcane germplasm, especially from the aspects of setts germination and tillers formation, and it also screened out several excellent germplasm for potential application in sugarcane breeding.


Subject(s)
Germination , Plant Diseases , Saccharum , Saccharum/microbiology , Saccharum/growth & development , Saccharum/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/prevention & control , Disease Resistance/genetics , Ustilaginales/pathogenicity , Ustilaginales/physiology , Ustilaginales/genetics
6.
Environ Pollut ; 356: 124375, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880327

ABSTRACT

Water pollution caused by antibiotics and synthetic dyes and imminent energy crises due to limited fossil fuel resources are issues of contemporary decades. Herein, we address them by enabling the multifunctionality in dual Z-scheme MoS2/WO3-x/AgBiS2 across photolysis, photo Fenton-like, and night catalysis. Defect, basal, and facet-engineered WO3-x is modified with MoS2 and AgBiS2, which extended its photoresponse from the UV-NIR region, inhibited carrier recombination, and reduced carrier transfer resistance. The electric field rearrangement leads to a flow of electrons from MoS2 and AgBiS2 to WO3-x and intensifies the electron population, which is crucial for night catalysis. When MoS2/WO3-x/AgBiS2 was employed against doxycycline hydrochloride (DOXH), it removed 95.65, 81.11, and 77.92 % of DOXH in 100 min during photo-Fenton (PFR), night-Fenton (NFR), and photocatalytic (PCR) reactions, respectively. It also effectively removed 91.91, 98.17, 99.01, and 98.99 % of rhodamine B (RhB), Congo red (CR), methylene blue (MB), and methylene orange (MO) in Fenton reactions, respectively. ESR analysis consolidates the ROS generation feature of MoS2/WO3-x/AgBiS2 using H2O2 with and without irradiation. This work provides a strategy to eliminate the deficiencies of WO3-x and is conducive to the evolution of applications seeking to combat environmental and energy crises.

7.
Heliyon ; 10(11): e31304, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845922

ABSTRACT

Plesiomonas shigelloides, an aquatic bacterium belonging to the Enterobacteriaceae family, is a frequent cause of gastroenteritis with diarrhea and gastrointestinal severe disease. Despite decades of research, discovering a licensed and globally accessible vaccine is still years away. Developing a putative vaccine that can combat the Plesiomonas shigelloides infection by boosting population immunity against P. shigelloides is direly needed. In the framework of the current study, the entire proteome of P. shigelloides was explored using subtractive genomics integrated with the immunoinformatics approach for designing an effective vaccine construct against P. shigelloides. The overall stability of the vaccine construct was evaluated using molecular docking, which demonstrated that MEV showed higher binding affinities with toll-like receptors (TLR4: 51.5 ± 10.3, TLR2: 60.5 ± 9.2) and MHC receptors(MHCI: 79.7 ± 11.2 kcal/mol, MHCII: 70.4 ± 23.7). Further, the therapeutic efficacy of the vaccine construct for generating an efficient immune response was evaluated by computational immunological simulation. Finally, computer-based cloning and improvement in codon composition without altering amino acid sequence led to the development of a proposed vaccine. In a nutshell, the findings of this study add to the existing knowledge about the pathogenesis of this infection. The schemed MEV can be a possible prophylactic agent for individuals infected with P. shigelloides. Nevertheless, further authentication is required to guarantee its safeness and immunogenic potential.

8.
Chem Sci ; 15(22): 8514-8529, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38846389

ABSTRACT

The advancement of optoelectronic applications relies heavily on the development of high-performance photodetectors that are self-driven and capable of detecting a wide range of wavelengths. CsPbI3 nanorods (NRs), known for their outstanding optical and electrical properties, offer direct bandgap characteristics, high absorption coefficients, and long carrier diffusion lengths. However, challenges such as stability and limited photoluminescence quantum yield have impeded their widespread application. By integrating PbSe colloidal quantum dots (CQDs) with CsPbI3 NRs, the hybrid nanomaterial harnesses the benefits of each component, resulting in enhanced optoelectronic properties and device performance. In this work, a self-powered and broadband photodetector, ITO/ZnO/CsPbI3:PbSe/CuSCN/Au, is fabricated, in which CsPbI3 NRs are decorated with PbSe QDs as the photoactive layer, ZnO as the electron-transporting layer and CuSCN as the hole-transporting layer. The device performance is further improved through the incorporation of Cs2CO3 into the ZnO layer, resulting in an enhancement of its overall operational characteristics. As a result, a notable responsivity of 9.29 A W-1 and a specific detectivity of 3.17 × 1014 Jones were achieved. Certainly, the TCAD simulations closely correlate with our experimental data, facilitating a comprehensive exploration of the fundamental physical mechanisms responsible for the improved performance of these surface-passivated heterojunction photodetectors. This opens up exciting possibilities for substantial advancements in the realm of next-generation optoelectronic devices.

9.
PLoS One ; 19(6): e0305720, 2024.
Article in English | MEDLINE | ID: mdl-38905249

ABSTRACT

Syphilis, caused by Treponema pallidum, is resurging globally. Molecular typing allows for the investigation of its epidemiology. In Pakistan and other nations, T. pallidum subsp. pallidum has developed widespread macrolide resistance in the past decade. A study at the Peshawar Regional Blood Centre from June 2020-June 2021 analyzed serum samples from 32,812 blood donors in Khyber Pakhtunkhwa, Pakistan, to assess circulating T. pallidum strains and antibiotic resistance. Blood samples were initially screened for T. pallidum antibodies using a chemiluminescent microparticle immunoassay (CMIA). CMIA-reactive samples underwent polymerase chain reaction (PCR) targeted the polA, tpp47, bmp, and tp0319 genes. PCR-positive samples were further analyzed for molecular subtyping using a CDC-developed procedure and tp0548 gene examination. All PCR-positive samples were analyzed for the presence of point mutations A2058G and A2059G in 23S rRNA, as well as the G1058C mutation in 16S rRNA. These mutations are known to impart antimicrobial resistance to macrolides and doxycycline, respectively. Out of 32,812 serum samples, 272 (0.83%) were CMIA-reactive, with 46 being PCR-positive. Nine T. pallidum subtypes were identified, predominantly 14d/f. The A2058G mutation in 23S rRNA was found in 78% of cases, while G1058C in 16S rRNA and A2059G in 23S rRNA were absent. The research found donor blood useful for assessing T. pallidum molecular subtypes and antibiotic resistance, especially when chancres are not present. The prevalent subtype was 14d/f (51.85%), and the high macrolide resistance of 36 (78%) indicates caution in using macrolides for syphilis treatment in Khyber Pakhtunkhwa, Pakistan.


Subject(s)
Anti-Bacterial Agents , Blood Donors , Drug Resistance, Bacterial , Syphilis , Treponema pallidum , Treponema pallidum/genetics , Treponema pallidum/drug effects , Treponema pallidum/isolation & purification , Humans , Pakistan/epidemiology , Syphilis/microbiology , Syphilis/epidemiology , Syphilis/blood , Syphilis/drug therapy , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Male , Female , Adult , Macrolides/pharmacology , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 16S/genetics , Middle Aged , Doxycycline/pharmacology , Doxycycline/therapeutic use , Young Adult
10.
Comput Biol Med ; 177: 108661, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810477

ABSTRACT

With the use of specific genetic factors and recent developments in cellular reprogramming, it is now possible to generate lineage-committed cells or induced pluripotent stem cells (iPSCs) from readily available and common somatic cell types. However, there are still significant doubts regarding the safety and effectiveness of the current genetic methods for reprogramming cells, as well as the conventional culture methods for maintaining stem cells. Small molecules that target specific epigenetic processes, signaling pathways, and other cellular processes can be used as a complementary approach to manipulate cell fate to achieve a desired objective. It has been discovered that a growing number of small molecules can support lineage differentiation, maintain stem cell self-renewal potential, and facilitate reprogramming by either increasing the efficiency of reprogramming or acting as a genetic reprogramming factor substitute. However, ongoing challenges include improving reprogramming efficiency, ensuring the safety of small molecules, and addressing issues with incomplete epigenetic resetting. Small molecule iPSCs have significant clinical applications in regenerative medicine and personalized therapies. This review emphasizes the versatility and potential safety benefits of small molecules in overcoming challenges associated with the iPSCs reprogramming process.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Cellular Reprogramming/drug effects , Animals , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Epigenesis, Genetic , Cell Differentiation/drug effects
11.
ACS Omega ; 9(14): 16832-16841, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617622

ABSTRACT

In the current research study, zinc oxide nanoparticles (ZnO-NPs) were synthesized via a green synthesis technique using the seed extract of Citrullus lanatus. The study further intended to evaluate the potential synergistic effects of ZnO-NPs with antibiotics against multidrug resistant (MDR) bacteria. It was observed that C. lanatus seed extracts obtained by n-hexane and methanolic solvents revealed the presence of constituents, such as tannins, flavonoids, and terpenoids. Furthermore, the extract of n-hexane displayed the strongest antibacterial activity against Yersinia species (17 ± 1.2 mm) and Escherichia coli (17 ± 2.6 mm), while the methanolic extract showed the maximum antibacterial activity against E. coli (17 ± 0.8 mm). Additionally, the ZnO-NP synthesis was confirmed by ultraviolet-visible analysis with a characteristic absorption peak at 280 nm. The Fourier transform infrared spectroscopy analysis suggested the absorption peaks in the 500-3800 cm-1 range, which corresponds to various groups of tertiary alcohol, aldehyde, amine, ester, aromatic compounds, thiol, amine salt, and primary amine. The scanning electron microscopy spectra of ZnO-NPs demonstrated the presence of zero-dimensional spherical particles with well-dispersed character. Moreover, encapsulation with ZnO-NPs improved the antimicrobial activity of antibiotics against the panel of MDR bacteria, and the increases in the effectiveness of particular antibiotics against MDR bacteria were significant (P = 0.0005). In essence, the synthesized ZnO-NPs have the potential as drug carriers with powerful bactericidal properties that work against MDR bacterial strains. These outcomes are an indication of such significance in pharmaceutical science, giving possibilities for further research and development in this field.

12.
Microb Pathog ; 189: 106599, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428471

ABSTRACT

We have functionally evaluated a transcription factor CaMYB59 for its role in pepper immune responses to Ralstonia solanacearum attack and high temperature-high humidity (HTHH). Exposure to R. solanacearum inoculation (RSI) and HTHH resulted in up-regulation of this nucleus-localized TF. Function of this TF was confirmed by performing loss of function assay of CaMYB59 by VIGS (virus-induced gene silencing). Plants with silenced CaMYB59 displayed not only compromised pepper immunity against RSI but also impaired tolerance to HTHH along with decreased hypersensitive response (HR). This impairment in defense function was fully linked with low induction of stress-linked genes like CaPO2, CaPR1, CaAcc and thermo-tolerance linked CaHSP24 as well as CaHsfB2a. Conversely, transient overexpression of CaMYB59 enhanced pepper immunity. This reveals that CaMYB59 positively regulated host defense against RSI and HTHH by means of HR like mimic cell death, H2O2 production and up-regulation of defense as well as thermo-tolerance associated genes. These changes in attributes collectively confirm the role of CaMYB59 as a positive regulator of pepper immunity against R. solanacearum. We recommend that such positive regulation of pepper defense is dynamically supported by phyto-hormone signaling and transcriptional web of defense genes. These integrated and interlinked events stabilize plant growth and survival under abiotic and biotic stresses.


Subject(s)
Plant Growth Regulators , Ralstonia solanacearum , Humans , Plant Growth Regulators/genetics , Disease Resistance/genetics , Plant Immunity/genetics , Ralstonia solanacearum/genetics , Hydrogen Peroxide/metabolism , Temperature , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/genetics
13.
J Photochem Photobiol B ; 253: 112888, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471422

ABSTRACT

AIM: To acquire a thorough comprehension of the photoactivated Cur-doped ZnONPs at different concentrations 0%, 2.5%, and 5% on the physical qualities, antibacterial efficacy, degree of conversion, and µshear bond strength between orthodontic brackets and the enamel surface. MATERIAL AND METHODS: An extensive investigation was carried out utilizing a range of analytical methods, scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FTIR) spectroscopy, micro tensile bond strength (µTBS) testing, and evaluation of antibacterial effectiveness. Cur-doped ZnONPs at concentrations of 2.5% and 5% were blended with Transbond XT, a light-curable orthodontic adhesive. A control group without the addition of Cur-doped ZnONPs was also prepared. The tooth samples were categorized into three groups based on the weight percentage of NPs: Group 1 (control) with 0% Cur-doped ZnONPs, Group 2 with 2.5 wt% Cur-doped ZnONPs, and Group 3 with 5 wt% Cur-doped ZnONPs. The SEM technique was employed to analyze the morphological characteristics of Cur-doped ZnONPs and ZnONPs. The composition and elemental distribution of the modified Cur-doped ZnONPs were assessed using energy-dispersive X-ray spectroscopy. The effectiveness of NPs at various concentrations against S.Mutans was gauged through the pour plate method. DC of Cur-doped ZnONPs at a region of 1608 cm-1 to 1636 cm-1 for the cured area, whereas the uncured area spanned the same range of 1608 cm-1 to 1636 cm-1 was assessed. The Adhesive Remnant Index (ARI) approach was utilized to investigate the bond failure of orthodontic brackets, while a Universal Testing Machine (UTM) was utilized to test µTBS. The Kruskal-Wallis test was employed to investigate variations in S.mutans survival rates. To determine the µTBS values, analysis of variance (ANOVA) and the post hoc Tukey multiple comparisons test were used. RESULTS: The maximum µTBS was given and documented in group 3: 5 wt% Cur-doped ZnONPs (21.21 ± 1.53 MPa). The lowest µTBS was given in group 2: 2.5 wt% Cur-doped ZnONPs (19.58 ± 1.27 MPa). The highest efficacy against S.mutans was documented in group 3 in which 5 wt% Cur-doped ZnONPs (0.39 ± 0.15). The lowest efficacy was seen in group 1 in which no Cur-doped ZnONPs were used (6.47 ± 1.23). The ARI analysis indicated that the predominant failure was between scores 0 and 1 among all experimental groups. Control group 1 which was not modified showed the highest DC (73.11 ± 4.19). CONCLUSION: Orthodontic adhesive, containing 5% Cur-doped ZnONPs photoactivated with visible light exhibited a favorable impact on µTBS and indicated enhanced antibacterial efficacy against S.mutans. Nevertheless, it was observed that the addition of Cur-doped ZnONPs at different concentrations (2.5%,5%) resulted in a decrease in the monomer-to-polymer ratio compromising DC.


Subject(s)
Curcumin , Nanoparticles , Zinc Oxide , Adhesiveness , Surface Properties , Staphylococcus aureus , Microscopy, Electron, Scanning , X-Rays , Anti-Bacterial Agents/pharmacology , Light , Spectrum Analysis , Materials Testing
14.
Front Nutr ; 11: 1328620, 2024.
Article in English | MEDLINE | ID: mdl-38481973

ABSTRACT

In the current arena of time, the transformation of society has improved the standard of living in terms of lifestyle and their nutritional demands and requirements. The microorganisms under controlled conditions and the enzymatic transformation of dietary components are the processes that resulted in fermented foods and beverages. Fermented dairy products with high nutritional value are "the pearls of the dairy industry." During fermentation, fermented dairy products produce bioactive compounds and metabolites derived from bacteria. Research indicates the beneficial effects of probiotics found in dairy products on human health is making lightning-fast headway these days. The utilization of lactic acid bacteria as probiotics for the prevention or treatment of disease has been a driving force behind the discovery of novel potential probiotics found in naturally fermented milk. Probiotics such as lactic acid bacteria and bifidobacteria found in fermented dairy products have a variety of health benefits, including innate immune enhancement, diarrhea treatment, inflammatory bowel disease, diabetes, Tuberculosis, and obesity, relieving irritable bowel disease symptoms, preventing cancer, improving lactose tolerance, lowering cholesterol, enhancing antioxidant activity, and antimicrobial activity against pathogens. This review aims to evaluate the therapeutic efficacy and nutritional and microbiological properties of popular fermented dairy products and their health benefits.

15.
J Clin Densitom ; 27(2): 101471, 2024.
Article in English | MEDLINE | ID: mdl-38306806

ABSTRACT

Osteoporosis is characterised by the loss of bone density resulting in an increased risk of fragility fractures. The clinical gold standard for diagnosing osteoporosis is based on the areal bone mineral density (aBMD) used as a surrogate for bone strength, in combination with clinical risk factors. Finite element (FE) analyses based on quantitative computed tomography (QCT) have been shown to estimate bone strength better than aBMD. However, their application in the osteoporosis clinics is limited due to exposure of patients to increased X-rays radiation dose. Statistical modelling methods (3D-DXA) enabling the estimation of 3D femur shape and volumetric bone density from dual energy X-ray absorptiometry (DXA) scan have been shown to improve osteoporosis management. The current study used 3D-DXA based FE analyses to estimate femur strength from the routine clinical DXA scans and compared its results against 151 QCT based FE analyses, in a clinical cohort of 157 subjects. The linear regression between the femur strength predicted by QCT-FE and 3D-DXA-FE models correlated highly (coefficient of determination R2 = 0.86) with a root mean square error (RMSE) of 397 N. In conclusion, the current study presented a 3D-DXA-FE modelling tool providing accurate femur strength estimates noninvasively, compared to QCT-FE models.


Subject(s)
Absorptiometry, Photon , Bone Density , Femur , Finite Element Analysis , Imaging, Three-Dimensional , Tomography, X-Ray Computed , Humans , Femur/diagnostic imaging , Tomography, X-Ray Computed/methods , Female , Aged , Middle Aged , Male , Osteoporosis/diagnostic imaging , Osteoporosis/physiopathology , Aged, 80 and over
16.
Funct Plant Biol ; 512024 02.
Article in English | MEDLINE | ID: mdl-38354689

ABSTRACT

The SPL gene family (for Squamosa Promoter-binding like Proteins) represents specific transcription factors that have significant roles in abiotic stress tolerance, development and the growth processes of different plants, including initiation of the leaf, branching and development of shoot and fruits. The SPL gene family has been studied in different plant species; however, its role is not yet fully explored in pigeon pea (Cajanus cajan ). In the present study, 11 members of the CcSPL gene family were identified in C. cajan . The identified SPLs were classified into nine groups based on a phylogenetic analysis involving SPL protein sequences from C. cajan , Arabidopsis thaliana , Cicer arietinum , Glycine max , Phaseolus vulgaris , Vigna unguiculata and Arachis hypogaea . Further, the identification of gene structure, motif analysis, domain analysis and presence of cis -regulatory elements in the SPL family members were studied. Based on RNA-sequencing data, gene expression analysis was performed, revealing that CcSPL2.1, 3 and 13A were significantly upregulated for salt-tolerance and CcSPL14 and 15 were upregulated in a salt-susceptible cultivar. Real-time qPCR validation indicated that CcSPL3, 4, 6 and 13A were upregulated under salt stress conditions. Therefore, molecular docking was performed against the proteins of two highly expressed genes (CcSPL3 and CcSPL14 ) with three ligands: abscisic acid, gibberellic acid and indole-3-acetic acid. Afterward, their binding affinity was obtained and three-dimensional structures were predicted. In the future, our study may open avenues for harnessing CcSPL genes in pigeon pea for enhanced abiotic stress resistance and developmental traits.


Subject(s)
Cajanus , Cajanus/genetics , Cajanus/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Plant Proteins/metabolism , Phylogeny , Molecular Docking Simulation , Stress, Physiological/genetics , Flowers/metabolism
17.
J Biomol Struct Dyn ; 42(3): 1099-1109, 2024.
Article in English | MEDLINE | ID: mdl-37021492

ABSTRACT

Triple negative breast cancers (TNBC) are clinically heterogeneous but mostly aggressive malignancies devoid of expression of the estrogen, progesterone, and HER2 (ERBB2 or NEU) receptors. It accounts for 15-20% of all cases. Altered epigenetic regulation including DNA hypermethylation by DNA methyltransferase 1 (DNMT1) has been implicated as one of the causes of TNBC tumorigenesis. The antitumor effect of DNMT1 has also been explored in TNBC that currently lacks targeted therapies. However, the actual treatment for TNBC is yet to be discovered. This study is attributed to the identification of novel drug targets against TNBC. A comprehensive docking and simulation analysis was performed to optimize promising new compounds by estimating their binding affinity to the target protein. Molecular dynamics simulation of 500 ns well complemented the binding affinity of the compound and revealed strong stability of predicted compounds at the docked site. Calculation of binding free energies using MMPBSA and MMGBSA validated the strong binding affinity between compound and binding pockets of DNMT1. In a nutshell, our study uncovered that Beta-Mangostin, Gancaonin Z, 5-hydroxysophoranone, Sophoraflavanone L, and Dorsmanin H showed maximum binding affinity with the active sites of DNMT1. Furthermore, all of these compounds depict maximum drug-like properties. Therefore, the proposed compounds can be a potential candidate for patients with TNBC, but, experimental validation is needed to ensure their safety.Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , Triple Negative Breast Neoplasms , Xanthones , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Epigenesis, Genetic , Early Detection of Cancer , DNA , Molecular Docking Simulation
18.
Curr Stem Cell Res Ther ; 19(3): 367-388, 2024.
Article in English | MEDLINE | ID: mdl-37073151

ABSTRACT

A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.


Subject(s)
Induced Pluripotent Stem Cells , Transcription Factors , Adult , Humans , Mice , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Cellular Reprogramming/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Induced Pluripotent Stem Cells/metabolism
20.
Diagn Microbiol Infect Dis ; 108(1): 116109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918188

ABSTRACT

Staphylococcus epidermidis is an opportunistic bacterial pathogen. The study screened isolates of S. epidermidis of pediatric origin for genetic markers of discriminatory potential. 103 isolates (n = 75 clinical; n = 28 community) were screened for methicillin resistance (mecA), formate dehydrogenase (fdh) and an array of virulence factors through multiplex PCR and Congo red assay. The isolates were typed in four distinct categories, based on the presence of selected virulent factors. The type A clinical isolates carrying icaADBC operon (n = 22; 29.3%, P = 0.117) were not significantly differentiating the origin of isolates. The type B clinical isolates representing methicillin resistant S. epidermidis (MRSE) (n = 73; 97.3%, P < 0.00001) and the type C clinical isolates lacking formate dehydrogenase fdh (n = 62; 82.6%, P < 0.00001) were having significant discriminatory potential of clinical isolates, respectively. All type D community isolates were carrying fdh (n = 28; 100%, P < 0.00001). MecA and fdh are significant differential markers of pathogenicity and commensalism in S. epidermidis of pediatric origin.


Subject(s)
Staphylococcal Infections , Staphylococcus epidermidis , Child , Humans , Staphylococcus epidermidis/genetics , Formate Dehydrogenases , Virulence/genetics , Staphylococcal Infections/microbiology , Pakistan , Symbiosis , Anti-Bacterial Agents , Bacterial Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL