Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
New Phytol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962989

ABSTRACT

Grain filling in maize (Zea mays) is intricately linked to cell development, involving the regulation of genes responsible for the biosynthesis of storage reserves (starch, proteins, and lipids) and phytohormones. However, the regulatory network coordinating these biological functions remains unclear. In this study, we identified 1744 high-confidence target genes co-regulated by the transcription factors (TFs) ZmNAC128 and ZmNAC130 (ZmNAC128/130) through chromatin immunoprecipitation sequencing coupled with RNA-seq analysis in the zmnac128/130 loss-of-function mutants. We further constructed a hierarchical regulatory network using DNA affinity purification sequencing analysis of downstream TFs regulated by ZmNAC128/130. In addition to target genes involved in the biosynthesis of starch and zeins, we discovered novel target genes of ZmNAC128/130 involved in the biosynthesis of lipids and indole-3-acetic acid (IAA). Consistently, the number of oil bodies, as well as the contents of triacylglycerol, and IAA were significantly reduced in zmnac128/130. The hierarchical regulatory network centered by ZmNAC128/130 revealed a significant overlap between the direct target genes of ZmNAC128/130 and their downstream TFs, particularly in regulating the biosynthesis of storage reserves and IAA. Our results indicated that the biosynthesis of storage reserves and IAA is coordinated by a multi-TFs hierarchical regulatory network in maize endosperm.

2.
Hum Genomics ; 18(1): 77, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38978046

ABSTRACT

Most TRIM family members characterized by the E3-ubiquitin ligases, participate in ubiquitination and tumorigenesis. While there is a dearth of a comprehensive investigation for the entire family in gastric cancer (GC). By combining the TCGA and GEO databases, common TRIM family members (TRIMs) were obtained to investigate gene expression, gene mutations, and clinical prognosis. On the basis of TRIMs, a consensus clustering analysis was conducted, and a risk assessment system and prognostic model were developed. Particularly, TRIM31 with clinical prognostic and diagnostic value was chosen for single-gene bioinformatics analysis, in vitro experimental validation, and immunohistochemical analysis of clinical tissue microarrays. The combined dataset consisted of 66 TRIMs, of which 52 were differentially expressed and 43 were differentially prognostic. Significant survival differences existed between the gene clusters obtained by consensus clustering analysis. Using 4 differentially expressed genes identified by multivariate Cox regression and LASSO regression, a risk scoring system was developed. Higher risk scores were associated with a poorer prognosis, suppressive immune cell infiltration, and drug resistance. Transcriptomic data and clinical sample tissue microarrays confirmed that TRIM31 was highly expressed in GC and associated with a poor prognosis. Pathway enrichment analysis, cell migration and colony formation assay, EdU assay, reactive oxygen species (ROS) assay, and mitochondrial membrane potential assay revealed that TRIM31 may be implicated in cell cycle regulation and oxidative stress-related pathways, contribute to gastric carcinogenesis. This study investigated the whole functional and expression profile and a risk score system based on the TRIM family in GC. Further investigation centered around TRIM31 offers insight into the underlying mechanisms of action exhibited by other members of its family in the context of GC.


Subject(s)
Gene Expression Regulation, Neoplastic , Stomach Neoplasms , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Humans , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Prognosis , Gene Expression Regulation, Neoplastic/genetics , Cell Line, Tumor , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Male , Computational Biology/methods , Cell Movement/genetics , Gene Expression Profiling
3.
Clin Transl Oncol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834909

ABSTRACT

BACKGROUND: The combination of preoperative chemotherapy and surgical treatment has been shown to significantly enhance the prognosis of colorectal cancer with liver metastases (CRLM) patients. Nevertheless, as a result of variations in clinicopathological parameters, the prognosis of this particular group of patients differs considerably. This study aimed to develop and evaluate Cox proportional risk regression model and competing risk regression model using two patient cohorts. The goal was to provide a more precise and personalized prognostic evaluation system. METHODS: We collected information on individuals who had a pathological diagnosis of colorectal cancer between 2000 and 2019 from the Surveillance, Epidemiology, and End Results (SEER) Database. We obtained data from patients who underwent pathological diagnosis of colorectal cancer and got comprehensive therapy at the hospital between January 1, 2010, and June 1, 2022. The SEER data collected after screening according to the inclusion and exclusion criteria were separated into two cohorts: a training cohort (training cohort) and an internal validation cohort (internal validation cohort), using a random 1:1 split. Subgroup Kaplan-Meier (K-M) survival analyses were conducted on each of the three groups. The data that received following screening from the hospital were designated as the external validation cohort. The subsequent variables were chosen for additional examination: age, gender, marital status, race, tumor site, pretreatment carcinoembryonic antigen level, tumor size, T stage, N stage, pathological grade, number of tumor deposits, perineural invasion, number of regional lymph nodes examined, and number of positive regional lymph nodes. The primary endpoint was median overall survival (mOS). In the training cohort, we conducted univariate Cox regression analysis and utilized a stepwise regression approach, employing the Akaike information criterion (AIC) to select variables and create Cox proportional risk regression models. We evaluated the accuracy of the model using calibration curve, receiver operating characteristic curve (ROC), and area under curve (AUC). The effectiveness of the models was assessed using decision curve analysis (DCA). To evaluate the non-cancer-related outcomes, we analyzed variables that had significant impacts using subgroup cumulative incidence function (CIF) and Gray's test. These analyses were used to create competing risk regression models. Nomograms of the two models were constructed separately and prognostic predictions were made for the same patients in SEER database. RESULTS: This study comprised a total of 735 individuals. The mOS of the training cohort, internal validation cohort, and QDU cohort was 55.00 months (95%CI 46.97-63.03), 48.00 months (95%CI 40.65-55.35), and 68.00 months (95%CI 54.91-81.08), respectively. The multivariate Cox regression analysis revealed that age, N stage, presence of perineural infiltration, number of tumor deposits and number of positive regional lymph nodes were identified as independent prognostic risk variables (p < 0.05). In comparison to the conventional TNM staging model, the Cox proportional risk regression model exhibited a higher C-index. After controlling for competing risk events, age, N stage, presence of perineural infiltration, number of tumor deposits, number of regional lymph nodes examined, and number of positive regional lymph nodes were independent predictors of the risk of cancer-specific mortality (p < 0.05). CONCLUSION: We have developed a prognostic model to predict the survival of patients with synchronous CRLM who undergo preoperative chemotherapy and surgery. This model has been tested internally and externally, confirming its accuracy and reliability.

4.
Planta ; 260(1): 16, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833022

ABSTRACT

MAIN CONCLUSION: A callus-specific CRISPR/Cas9 (CSC) system with Cas9 gene driven by the promoters of ZmCTA1 and ZmPLTP reduces somatic mutations and improves the production of heritable mutations in maize. The CRISPR/Cas9 system, due to its editing accuracy, provides an excellent tool for crop genetic breeding. Nevertheless, the traditional design utilizing CRISPR/Cas9 with ubiquitous expression leads to an abundance of somatic mutations, thereby complicating the detection of heritable mutations. We constructed a callus-specific CRISPR/Cas9 (CSC) system using callus-specific promoters of maize Chitinase A1 and Phospholipid transferase protein (pZmCTA1 and pZmPLTP) to drive Cas9 expression, and the target gene chosen for this study was the bZIP transcription factor Opaque2 (O2). The CRISPR/Cas9 system driven by the maize Ubiquitin promoter (pZmUbi) was employed as a comparative control. Editing efficiency analysis based on high-throughput tracking of mutations (Hi-TOM) showed that the CSC systems generated more target gene mutations than the ubiquitously expressed CRISPR/Cas9 (UC) system in calli. Transgenic plants were generated for the CSC and UC systems. We found that the CSC systems generated fewer target gene mutations than the UC system in the T0 seedlings but reduced the influence of somatic mutations. Nearly 100% of mutations in the T1 generation generated by the CSC systems were derived from the T0 plants. Only 6.3-16.7% of T1 mutations generated by the UC system were from the T0 generation. Our results demonstrated that the CSC system consistently produced more stable, heritable mutants in the subsequent generation, suggesting its potential application across various crops to facilitate the genetic breeding of desired mutations.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Mutation , Plants, Genetically Modified , Zea mays , Zea mays/genetics , Plants, Genetically Modified/genetics , Gene Editing/methods , Promoter Regions, Genetic/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , DNA-Binding Proteins
5.
Front Immunol ; 15: 1377472, 2024.
Article in English | MEDLINE | ID: mdl-38807601

ABSTRACT

Background: Gastric cancer (GC) poses a global health challenge due to its widespread prevalence and unfavorable prognosis. Although immunotherapy has shown promise in clinical settings, its efficacy remains limited to a minority of GC patients. Manganese, recognized for its role in the body's anti-tumor immune response, has the potential to enhance the effectiveness of tumor treatment when combined with immune checkpoint inhibitors. Methods: Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases was utilized to obtain transcriptome information and clinical data for GC. Unsupervised clustering was employed to stratify samples into distinct subtypes. Manganese metabolism- and immune-related genes (MIRGs) were identified in GC by univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analysis. We conducted gene set variation analysis, and assessed the immune landscape, drug sensitivity, immunotherapy efficacy, and somatic mutations. The underlying role of NPR3 in GC was further analyzed in the single-cell RNA sequencing data and cellular experiments. Results: GC patients were classified into four subtypes characterized by significantly different prognoses and tumor microenvironments. Thirteen genes were identified and established as MIRGs, demonstrating exceptional predictive effectiveness in GC patients. Distinct enrichment patterns of molecular functions and pathways were observed among various risk subgroups. Immune infiltration analysis revealed a significantly greater abundance of macrophages and monocytes in the high-risk group. Drug sensitivity analysis identified effective drugs for patients, while patients in the low-risk group could potentially benefit from immunotherapy. NPR3 expression was significantly downregulated in GC tissues. Single-cell RNA sequencing analysis indicated that the expression of NPR3 was distributed in endothelial cells. Cellular experiments demonstrated that NPR3 facilitated the proliferation of GC cells. Conclusion: This is the first study to utilize manganese metabolism- and immune-related genes to identify the prognostic MIRGs for GC. The MIRGs not only reliably predicted the clinical outcome of GC patients but also hold the potential to guide future immunotherapy interventions for these patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Manganese , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/therapy , Prognosis , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Biomarkers, Tumor/genetics , Transcriptome , Gene Expression Profiling , Immunotherapy/methods , Male , Female , Databases, Genetic
6.
J Gene Med ; 26(4): e3684, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38618694

ABSTRACT

BACKGROUND: Colon cancer is one of the most common digestive tract malignancies. Although immunotherapy has brought new hope to colon cancer patients, there is still a large proportion of patients who do not benefit from immunotherapy. Studies have shown that neutrophils can interact with immune cells and immune factors to affect the prognosis of patients. METHODS: We first determined the infiltration level of neutrophils in tumors using the CIBERSORT algorithm and identified key genes in the final risk model by Spearman correlation analysis and subsequent Cox analysis. The risk score of each patient was obtained by multiplying the Cox regression coefficient and the gene expression level, and patients were divided into two groups based on the median of risk score. Differences in overall survival (OS) and progression-free survival (PFS) were assessed by Kaplan-Meier survival analysis, and model accuracy was validated in independent dataset. Differences in immune infiltration and immunotherapy were evaluated by immunoassay. Finally, immunohistochemistry and western blotting were performed to verify the expression of the three genes in the colon normal and tumor tissues. RESULTS: We established and validated a risk scoring model based on neutrophil-related genes in two independent datasets, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, with SLC11A1 and SLC2A3 as risk factors and MMP3 as a protective factor. A new nomogram was constructed and validated by combining clinical characteristics and the risk score model to better predict patients OS and PFS. Immune analysis showed that patients in the high-risk group had immune cell infiltration level, immune checkpoint level and tumor mutational burden, and were more likely to benefit from immunotherapy. CONCLUSIONS: The low-risk group showed better OS and PFS than the high-risk group in the neutrophil-related gene-based risk model. Patients in the high-risk group presented higher immune infiltration levels and tumor mutational burden and thus may be more responsive to immunotherapy.


Subject(s)
Colonic Neoplasms , Neutrophils , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Risk Factors , Algorithms , Immunotherapy
7.
Signal Transduct Target Ther ; 9(1): 66, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472195

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and the development of non-alcoholic steatohepatitis (NASH) might cause irreversible hepatic damage. Hyperlipidemia (HLP) is the leading risk factor for NAFLD. This study aims to illuminate the causative contributor and potential mechanism of Kallistatin (KAL) mediating HLP to NAFLD. 221 healthy control and 253 HLP subjects, 62 healthy control and 44 NAFLD subjects were enrolled. The plasma KAL was significantly elevated in HLP subjects, especially in hypertriglyceridemia (HTG) subjects, and positively correlated with liver injury. Further, KAL levels of NAFLD patients were significantly up-regulated. KAL transgenic mice induced hepatic steatosis, inflammation, and fibrosis with time and accelerated inflammation development in high-fat diet (HFD) mice. In contrast, KAL knockout ameliorated steatosis and inflammation in high-fructose diet (HFruD) and methionine and choline-deficient (MCD) diet-induced NAFLD rats. Mechanistically, KAL induced hepatic steatosis and NASH by down-regulating adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) by LRP6/Gɑs/PKA/GSK3ß pathway through down-regulating peroxisome proliferator-activated receptor γ (PPARγ) and up-regulating kruppel-like factor four (KLF4), respectively. CGI-58 is bound to NF-κB p65 in the cytoplasm, and diminishing CGI-58 facilitated p65 nuclear translocation and TNFα induction. Meanwhile, hepatic CGI-58-overexpress reverses NASH in KAL transgenic mice. Further, free fatty acids up-regulated KAL against thyroid hormone in hepatocytes. Moreover, Fenofibrate, one triglyceride-lowering drug, could reverse hepatic steatosis by down-regulating KAL. These results demonstrate that elevated KAL plays a crucial role in the development of HLP to NAFLD and may be served as a potential preventive and therapeutic target.


Subject(s)
Non-alcoholic Fatty Liver Disease , Serpins , Humans , Mice , Rats , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Inflammation/metabolism , Mice, Transgenic
8.
Pharmacol Res ; 202: 107145, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492829

ABSTRACT

In many neurodegenerative disorders, such as Alzheimer's disease (AD), glutamate-mediated neuronal excitotoxicity is considered the basis for cognitive impairment. The mRNA and protein expression of SERPINA4(Kallistatin) are higher in patients with AD. However, whether Kallistatin plays a regulatory role in glutamate-glutamine cycle homeostasis remains unclear. In this study, we identified impaired cognitive function in Kallistatin transgenic (KAL-TG) mice. Baseline glutamate levels were elevated and miniature excitatory postsynaptic current (mEPSC) frequency was increased in the hippocampus, suggesting the impairment of glutamate homeostasis in KAL-TG mice. Mechanistically, we demonstrated that Kallistatin promoted lysine acetylation and ubiquitination of glutamine synthetase (GS) and facilitated its degradation via the proteasome pathway, thereby downregulating GS. Fenofibrate improved cognitive memory in KAL-TG mice by downregulating serum Kallistatin. Collectively, our study findings provide insights the mechanism by which Kallistatin regulates cognitive impairment, and suggest the potential of fenofibrate to prevente and treat of AD patients with high levels of Kallistatin.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Fenofibrate , Serpins , Humans , Mice , Animals , Glutamate-Ammonia Ligase/metabolism , Alzheimer Disease/metabolism , Mice, Transgenic , Glutamic Acid/metabolism , Cognitive Dysfunction/drug therapy , Cognition
9.
Sci Rep ; 14(1): 6050, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38480798

ABSTRACT

Effective drugs for the treatment of gastric cancer (GC) are still lacking. Nortriptyline Hydrochloride (NTP), a commonly used antidepressant medication, has been demonstrated by numerous studies to have antitumor effects. This study first validated the ability of NTP to inhibit GC and preliminarily explored its underlying mechanism. To begin with, NTP inhibits the activity of AGS and HGC27 cells (Human-derived GC cells) in a dose-dependent manner, as well as proliferation, cell cycle, and migration. Moreover, NTP induces cell apoptosis by upregulating BAX, BAD, and c-PARP and downregulating PARP and Bcl-2 expression. Furthermore, the mechanism of cell death caused by NTP is closely related to oxidative stress. NTP increases intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels, decreasing the mitochondrial membrane potential (MMP) and inducing glucose (GSH) consumption. While the death of GC cells can be partially rescued by ROS inhibitor N-acetylcysteine (NAC). Mechanistically, NTP activates the Kelch-like ECH-associated protein (Keap1)-NF-E2-related factor 2 (Nrf2) pathway, which is an important pathway involved in oxidative stress. RNA sequencing and proteomics analysis further revealed molecular changes at the mRNA and protein levels and provided potential targets and pathways through differential gene expression analysis. In addition, NTP can inhibited tumor growth in nude mouse subcutaneous tumor models constructed respectively using AGS and MFC (mouse-derived GC cells), providing preliminary evidence of its effectiveness in vivo. In conclusion, our study demonstrated that NTP exhibits significant anti-GC activity and is anticipated to be a candidate for drug repurposing.


Subject(s)
NF-E2-Related Factor 2 , Stomach Neoplasms , Mice , Animals , Humans , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Nortriptyline/pharmacology , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Stomach Neoplasms/drug therapy , Drug Repositioning , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Oxidative Stress , Apoptosis
10.
Ann Hematol ; 103(6): 1877-1885, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38308019

ABSTRACT

Pure red cell aplasia (PRCA) is a rare bone marrow disorder characterized by a severe reduction or absence of erythroid precursor cells, without affecting granulocytes and megakaryocytes. Immunosuppressive therapies, particularly cyclosporine, have demonstrated efficacy as a primary treatment. This study aims to develop a predictive model for assessing the efficacy of cyclosporine in acquired PRCA (aPRCA). This retrospective study encompasses newly treated aPRCA patients at the General Hospital of Tianjin Medical University. Diagnosis criteria include severe anemia, and absolute reticulocyte count below 10 × 109/L, with normal white blood cell and platelet counts, and a severe reduction in bone marrow erythroblasts. Cyclosporine therapy was administered, with dose adjustments based on blood concentration. Response to cyclosporine was evaluated according to established criteria. Statistical analysis involved logistic multi-factor regression, generating a predictive model. The study included 112 aPRCA patients with a median age of 63.5 years. Patients presented with severe anemia (median Hb, 56 g/L) and reduced reticulocyte levels. Eighty-six patients had no bone marrow nucleated erythroblasts. Primary PRCA accounted for 62 cases (55.4%), and secondary PRCA accounted for 50 cases (44.6%). Univariate analysis revealed that ferritin, platelet to lymphocyte ratio (PLR), and CD4/CD8 ratio influenced treatment response. Multivariate analysis further supported the predictive value of these factors. A prediction model was constructed using ferritin, PLR, and CD4/CD8 ratio, demonstrating high sensitivity and specificity. The ferritin, PLR, and CD4/CD8-based nomogram showed good predictive ability for aPRCA response to cyclosporine. This model has potential clinical value for individualized diagnosis and treatment of aPRCA patients.


Subject(s)
Cyclosporine , Nomograms , Red-Cell Aplasia, Pure , Humans , Cyclosporine/therapeutic use , Red-Cell Aplasia, Pure/drug therapy , Red-Cell Aplasia, Pure/blood , Middle Aged , Female , Male , Retrospective Studies , Aged , Adult , Immunosuppressive Agents/therapeutic use , Treatment Outcome , Aged, 80 and over
11.
Cancers (Basel) ; 16(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339428

ABSTRACT

BACKGROUND: The progression of tumors from less aggressive subtypes to more aggressive states during metastasis poses challenges for treatment strategies. Previous studies have revealed the molecular subtype conversion between primary and metastatic tumors in breast cancer (BC). However, the subtype conversion during lymph node metastasis (LNM) and the underlying mechanism remains unclear. METHODS: We compared clinical subtypes in paired primary tumors and positive lymph nodes (PLNs) in BC patients and further validated them in the mouse model. Bioinformatics analysis and macrophage-conditioned medium treatment were performed to investigate the role of macrophages in subtype conversion. RESULTS: During LNM, hormone receptors (HRs) were down-regulated, while HER2 was up-regulated, leading to the transformation of luminal A tumors towards luminal B tumors and from luminal B subtype towards HER2-enriched (HER2-E) subtype. The mouse model demonstrated the elevated levels of HER2 in PLN while retaining luminal characteristics. Among the various cells in the tumor microenvironment (TME), macrophages were the most clinically relevant in terms of prognosis. The treatment of a macrophage-conditioned medium further confirmed the downregulation of HR expression and upregulation of HER2 expression, inducing tamoxifen resistance. Through bioinformatics analysis, MNX1 was identified as a potential transcription factor governing the expression of HR and HER2. CONCLUSION: Our study revealed the HER2-E subtype conversion during LNM in BC. Macrophages were the crucial cell type in TME, inducing the downregulation of HR and upregulation of HER2, probably via MNX1. Targeting macrophages or MNX1 may provide new avenues for endocrine therapy and targeted treatment of BC patients with LNM.

12.
Immunol Invest ; 53(4): 541-558, 2024 May.
Article in English | MEDLINE | ID: mdl-38294019

ABSTRACT

BACKGROUND: This study aimed to elucidate the clinical significance and regulatory mechanism of the long non-coding RNA OIP5-AS1 in severe community-acquired pneumonia (SCAP) among paediatric patients. METHODS: qRT-PCR was used to assess the mRNA levels of OIP5-AS1. ROC curve analysis was used to assess the diagnostic significance of OIP5-AS1. Short-term prognostic significance was evaluated through Kaplan-Meier survival. An in vitro cell model was developed using LPS-induced MRC-5 cells. CCK-8, flow cytometry, and ELISA were conducted to measure cell viability, apoptosis, and inflammatory factor levels. The association between miR-150-5p and PDCD4 was confirmed through DLR assays. RESULTS: Elevated OIP5-AS1 were observed in paediatric patients with SCAP, which enabled effective differentiation from healthy individuals. High expression of OIP5-AS1 correlated with reduced survival rates. OIP5-AS1 knockdown attenuated cell viability suppression and the promotion of apoptosis and inflammatory factors induced by LPS. However, this attenuation was reversed by reduced levels of miR-150-5p. miR-150-5p was identified as a target of PDCD4 and OIP5-AS1. CONCLUSION: Increased OIP5-AS1 levels show potential as a valuable diagnostic and prognostic biomarker for paediatric patients with SCAP. This study illustrates its role in regulating cell viability, apoptosis, and the inflammatory response via the miR-150-5p/PDCD4 axis, acting as a ceRNA.


Subject(s)
Apoptosis Regulatory Proteins , Apoptosis , Community-Acquired Infections , MicroRNAs , Pneumonia , RNA, Long Noncoding , RNA-Binding Proteins , Humans , RNA, Long Noncoding/genetics , Community-Acquired Infections/genetics , Community-Acquired Infections/diagnosis , MicroRNAs/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Male , Female , Apoptosis/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Child , Pneumonia/genetics , Pneumonia/diagnosis , Pneumonia/immunology , Child, Preschool , Prognosis , Infant , Cell Line , Cell Survival/genetics , Gene Expression Regulation , Clinical Relevance
13.
Cell Commun Signal ; 22(1): 78, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291510

ABSTRACT

BACKGROUND: Renal fibrosis significantly contributes to the progressive loss of kidney function in chronic kidney disease (CKD), with alternatively activated M2 macrophages playing a crucial role in this progression. The serum succinate level is consistently elevated in individuals with diabetes and obesity, both of which are critical factors contributing to CKD. However, it remains unclear whether elevated succinate levels can mediate M2 polarization of macrophages and contribute to renal interstitial fibrosis. METHODS: Male C57/BL6 mice were administered water supplemented with 4% succinate for 12 weeks to assess its impact on renal interstitial fibrosis. Additionally, the significance of macrophages was confirmed in vivo by using clodronate liposomes to deplete them. Furthermore, we employed RAW 264.7 and NRK-49F cells to investigate the underlying molecular mechanisms. RESULTS: Succinate caused renal interstitial macrophage infiltration, activation of profibrotic M2 phenotype, upregulation of profibrotic factors, and interstitial fibrosis. Treatment of clodronate liposomes markedly depleted macrophages and prevented the succinate-induced increase in profibrotic factors and fibrosis. Mechanically, succinate promoted CTGF transcription via triggering SUCNR1-p-Akt/p-GSK3ß/ß-catenin signaling, which was inhibited by SUCNR1 siRNA. The knockdown of succinate receptor (SUCNR1) or pretreatment of anti-CTGF(connective tissue growth factor) antibody suppressed the stimulating effects of succinate on RAW 264.7 and NRK-49F cells. CONCLUSIONS: The causative effects of succinate on renal interstitial fibrosis were mediated by the activation of profibrotic M2 macrophages. Succinate-SUCNR1 played a role in activating p-Akt/p-GSK3ß/ß-catenin, CTGF expression, and facilitating crosstalk between macrophages and fibroblasts. Our findings suggest a promising strategy to prevent the progression of metabolic CKD by promoting the excretion of succinate in urine and/or using selective antagonists for SUCNR1.


Subject(s)
Renal Insufficiency, Chronic , beta Catenin , Male , Mice , Animals , beta Catenin/metabolism , Succinic Acid/metabolism , Liposomes/metabolism , Clodronic Acid/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Renal Insufficiency, Chronic/metabolism , Fibrosis , Macrophages/metabolism
14.
J Mol Cell Biol ; 15(10)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37873692

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis, is one of the commonest causes of liver dysfunction. Adipose triglyceride lipase (ATGL) is closely related to lipid turnover and hepatic steatosis as the speed-limited triacylglycerol lipase in liver lipolysis. However, the expression and regulation of ATGL in NAFLD remain unclear. Herein, our results showed that ATGL protein levels were decreased in the liver tissues of high-fat diet (HFD)-fed mice, naturally obese mice, and cholangioma/hepatic carcinoma patients with hepatic steatosis, as well as in the oleic acid-induced hepatic steatosis cell model, while ATGL mRNA levels were not changed. ATGL protein was mainly degraded through the proteasome pathway in hepatocytes. Beta-transducin repeat containing (BTRC) was upregulated and negatively correlated with the decreased ATGL level in these hepatic steatosis models. Consequently, BTRC was identified as the E3 ligase for ATGL through predominant ubiquitination at the lysine 135 residue. Moreover, adenovirus-mediated knockdown of BTRC ameliorated steatosis in HFD-fed mouse livers and oleic acid-treated liver cells via upregulating the ATGL level. Taken together, BTRC plays a crucial role in hepatic steatosis as a new ATGL E3 ligase and may serve as a potential therapeutic target for treating NAFLD.


Subject(s)
Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Oleic Acid/pharmacology , Oleic Acid/metabolism , WD40 Repeats , Liver/metabolism , Liver Neoplasms/pathology , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
15.
Cell Death Discov ; 9(1): 450, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086844

ABSTRACT

Cepharanthine (CEP), a bioactive compound derived from Stephania Cephalantha Hayata, is cytotoxic to various malignancies. However, the underlying mechanism of gastric cancer is unknown. CEP inhibited the cellular activity of gastric cancer AGS, HGC27 and MFC cell lines in this study. CEP-induced apoptosis reduced Bcl-2 expression and increased cleaved caspase 3, cleaved caspase 9, Bax, and Bad expression. CEP caused a G2 cell cycle arrest and reduced cyclin D1 and cyclin-dependent kinases 2 (CDK2) expression. Meanwhile, it increased oxidative stress, decreased mitochondrial membrane potential, and enhanced reactive oxygen species (ROS) accumulation in gastric cancer cell lines. Mechanistically, CEP inhibited Kelch-like ECH-associated protein (Keap1) expression while activating NF-E2 related factor 2 (Nrf2) nuclear translocations, increasing transcription of Nrf2 target genes quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HMOX1), and glutamate-cysteine ligase modifier subunit (GCLM). Furthermore, a combined analysis of targeted energy metabolism and RNA sequencing revealed that CEP could alter the levels of metabolic substances such as D (+) - Glucose, D-Fructose 6-phosphate, citric acid, succinic acid, and pyruvic acid, thereby altering energy metabolism in AGS cells. In addition, CEP significantly inhibited tumor growth in MFC BALB/c nude mice in vivo, consistent with the in vitro findings. Overall, CEP can induce oxidative stress by regulating Nrf2/Keap1 and alter energy metabolism, resulting in anti-gastric cancer effects. Our findings suggest a potential application of CEP in gastric cancer treatment.

16.
Radiol Oncol ; 57(4): 419-429, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38038416

ABSTRACT

BACKGROUND: The outcome of systemic therapy (ST) for unresectable and metastatic intrahepatic cholangiocarcinoma (iCCA) is poor. This study aims to further evaluate the efficacy and safety of locoregional therapy combined with systemic therapy (LRT + ST) compared with only ST in unresectable and metastatic iCCA by performing a systematic literature review and meta-analysis. METHODS: A comprehensive search was performed in PubMed, Web of Science, EMBASE, and the Cochrane Library up to November 3, 2022. The primary outcome was overall survival (OS), and the secondary outcomes were progression-free survival (PFS), objective response rate (ORR), and adverse events (AEs). RESULTS: Ten retrospective cohort studies with 3,791 unresectable or metastatic iCCA patients were enrolled in this study, including 1,120 who received ablation, arterially directed therapy (ADT), or external beam radiation therapy (EBRT) combined with ST. The meta-analysis showed that the LRT + ST group had a better OS (HR = 0.51; 95% CI =0.41-0.64; p value < 0.001), PFS (HR = 0.40, 95% CI = 0.22-0.71, p value = 0.002) and ORR (RR = 1.68; 95% CI = 1.17-2.42; p value = 0.005). Subgroup analysis showed that both ST combined with ADT (HR = 0.42, 95% CI = 0.31-0.56, p value < 0.001) and EBRT (HR = 0.67, 95% CI = 0.63-0.72, p value < 0.001) could improve OS. Neutropenia, thrombocytopenia, anemia, anorexia, and vomiting did not show significant differences between the groups (p value > 0.05). CONCLUSIONS: Compared with only ST, LRT + ST improved survival outcomes for unresectable and metastatic iCCA patients without increasing severe AEs, which can further provide a basis for guidelines.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Retrospective Studies , Cholangiocarcinoma/therapy , Progression-Free Survival , Bile Duct Neoplasms/therapy , Bile Ducts, Intrahepatic
17.
Int J Gen Med ; 16: 4883-4906, 2023.
Article in English | MEDLINE | ID: mdl-37928953

ABSTRACT

Purpose: Kinetochore scaffold 1 (KNL1), a crucial protein during cell mitosis participating in cell division, was widely expressed in multiple kinds of cancers. However, the expression profile, the effect on cell biological function, tumor immune microenvironment, and predictive value of clinical prognosis in pan-cancer of KNL1 still require a comprehensive inquiry. Methods: The mRNA and protein expression profile of KNL1 was validated in pan-cancer using different databases. Six algorithms were used to explore the correlation between KNL1 and immune infiltration and the relationship between KNL1 and tumor mutation burden (TMB), microsatellite instability (MSI), and TIDE score were calculated. The diagnostic and clinical prognostic predictive ability of KNL1 was assessed. Differentially expressed genes (DEGs) of KNL1 were screened out and function enrichment analyses were performed in pancreatic adenocarcinoma (PAAD), stomach adenocarcinoma (STAD), and bladder urothelial carcinoma (BLCA). Finally, 8 cases of pancreatic adenocarcinoma tissues and paired adjacent tissues were collected for immunohistochemical (IHC) staining and the histological score (H-score) was calculated. Real-time PCR was performed in gastric cancer and bladder cancer cell lines. Results: KNL1 was abnormally upregulated in more than half of cancers across different databases. IHC and real-time PCR verified the up-regulated expression in cancer tissues in PAAD, gastric cancer, and BLCA. The satisfactory diagnostic value of KNL1 was indicated in 30 cancers and high KNL1 expression was associated with poorer overall survival (OS) in 12 cancers. The prognostic role of KNL1 as a predictive biomarker of PAAD was clarified. KNL1 played an active part in the cell cycle and cell proliferation. Moreover, KNL1 was likely to mold the Th2-dominant suppressive tumor immune microenvironment and was associated with TMB, MSI, and immune checkpoint-related genes in pan-cancer. Conclusion: Our study elucidated the anomalous expression of KNL1 and revealed that KNL1 was a promising prognostic biomarker in pan-cancer.

18.
Front Immunol ; 14: 1284937, 2023.
Article in English | MEDLINE | ID: mdl-38022559

ABSTRACT

Systemic therapy remains the primary therapeutic approach for advanced hepatocellular carcinoma (HCC). Nonetheless, its efficacy in achieving control of intrahepatic lesions is constrained. Hepatic arterial infusion chemotherapy (HAIC) is a therapeutic approach that combines localized treatment with systemic antitumor effects, which aim is to effectively manage the progression of cancerous lesions within the liver, particularly in patients with portal vein tumor thrombosis (PVTT). Combining HAIC with anti-programmed cell death protein 1 (anti-PD-1) monoclonal antibody (mAb) immunotherapy is anticipated to emerge as a novel therapeutic approach aimed at augmenting the response inside the localized tumor site and achieving prolonged survival advantages. In order to assess the effectiveness, safety, and applicability of various therapeutic modalities and to address potential molecular mechanisms underlying the efficacy of HAIC-sensitizing immunotherapy, we reviewed the literature about the combination of HAIC with anti-PD-1 mAb therapies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Venous Thrombosis , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Treatment Outcome , Cisplatin/therapeutic use , Fluorouracil , Immunotherapy , Cell Death
20.
Invest Ophthalmol Vis Sci ; 64(12): 15, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37682567

ABSTRACT

Purpose: Retinal pigment epithelium (RPE) dysfunction induced by oxidative stress-related epithelial-mesenchymal transition (EMT) of RPE is the primary underlying mechanism of age-related macular degeneration (AMD). Kallistatin (KAL) is a secreted protein with an antioxidative stress effect. However, the relationship between KAL and EMT in RPE has not been determined. Therefore we aimed to explore the impact and mechanism of KAL in oxidative stress-induced EMT of RPE. Methods: Sodium iodate (SI) was injected intraperitoneally to construct the AMD rat model and investigate the changes in RPE morphology and KAL expression. KAL knockout rats and KAL transgenic mice were used to explain the effects of KAL on EMT and oxidative stress. In addition, Snail overexpressed adenovirus and si-RNA transfected ARPE19 cells to verify the involvement of Snail in mediating KAL-suppressed EMT of RPE. Results: AMD rats induced by SI expressed less KAL in the retina, and KAL knockout rats showed RPE dysfunction spontaneously where EMT and reactive oxygen species (ROS) production increased in RPE. In contrast, KAL overexpression attenuated EMT and ROS levels in RPE, even in TGF-ß treatment. Mechanistically, Snail reversed the beneficial effect of KAL on EMT and ROS reduction. Moreover, KAL ameliorated SI-induced AMD-like pathological changes. Conclusions: Our findings demonstrated that KAL inhibits oxidative stress-induced EMT by downregulating the transcription factor Snail. Herein, KAL knockout rats may be an appropriate animal model for observing spontaneous RPE dysfunction for AMD-like retinopathy, and KAL may represent a novel therapeutic target for treating dry AMD.


Subject(s)
Geographic Atrophy , Macular Degeneration , Serpins , Animals , Mice , Rats , Epithelial Cells , Epithelial-Mesenchymal Transition , Macular Degeneration/genetics , Mice, Transgenic , Oxidative Stress , Reactive Oxygen Species , Retinal Pigments , Serpins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL