Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters








Publication year range
1.
Syst Biol ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283716

ABSTRACT

Despite significant advances in phylogenetics over the past decades, the deep relationships within Bivalvia (phylum Mollusca) remain inconclusive. Previous efforts based on morphology or several genes have failed to resolve many key nodes in the phylogeny of Bivalvia. Advances have been made recently using transcriptome data, but the phylogenetic relationships within Bivalvia historically lacked consensus, especially within Pteriomorphia and Imparidentia. Here, we inferred the relationships of key lineages within Bivalvia using matrices generated from specifically designed ultraconserved elements (UCEs) with 16 available genomic resources and 85 newly sequenced specimens from 55 families. Our new probes (Bivalve UCE 2k v.1) for target sequencing captured an average of 849 UCEs with 1085-bp in mean length from in vitro experiments. Our results introduced novel schemes from six major clades (Protobranchina, Pteriomorphia, Palaeoheterodonta, Archiheterodonta, Anomalodesmata and Imparidentia), though some inner nodes were poorly resolved, such as paraphyletic Heterodonta in some topologies potentially due to insufficient taxon sampling. The resolution increased when analyzing specific matrices for Pteriomorphia and Imparidentia. We recovered three Pteriomorphia topologies different from previously published trees, with the strongest support for ((Ostreida + (Arcida + Mytilida)) + (Pectinida + (Limida + Pectinida))). Limida were nested within Pectinida, warranting further studies. For Imparidentia, our results strongly supported the new hypothesis of (Galeommatida + (Adapedonta + Cardiida)), while the possible non-monophyly of Lucinida was inferred but poorly supported. Overall, our results provide important insights into the phylogeny of Bivalvia and show that target enrichment sequencing of UCEs can be broadly applied to study both deep and shallow phylogenetic relationships.

2.
Ecol Evol ; 14(9): e70260, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39247167

ABSTRACT

For decades, many marine animals have been considered to exhibit cosmopolitan or transoceanic distribution. This situation is prevalent in Asia, where many species were collected and named by American or European experts in the 1700s to early 1900s. Using the windowpane oysters Placuna-a small genus of bivalves with five recognized species-we show that careful analysis is required to reassess the validity of these species. Currently, only two species of Placuna (P. placenta and P. ephippium) widely reported in the Indo-Pacific region have been recorded from Chinese coastal waters. Here, we described two new species of Placuna from China. Placuna vitream sp. nov. can be distinguished from P. placenta by its larger ridge angle. Phylogenetic analysis using five gene fragments fully supported that P. vitream sp. nov. is a sister to the specimen from Singapore identified as P. placenta and more distant from other Placuna species with available molecular data. Besides, based on subfossil shells, we describe Placuna aestuaria sp. nov. that differs from its congeneric species by its broad hinge, medium ridge angle, and nearly straight ridges. Finally, we suggest a combination of hinge structure and ridge angle that can be used for identifying Placuna species and preparing a key to this genus. Our findings of two new species expand the diversity of Placuna and prompt reassessment of the many presumably widely distributed marine species in Asia.

3.
Environ Int ; 190: 108867, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968833

ABSTRACT

Organotin compounds (OTs) are endocrine disruptors that induce imposex in hundreds of gastropods, but little is known about their underlying molecular mechanisms. This study aimed to investigate the endocrine toxicity and molecular responses to tributyltin (TBT) and triphenyltin (TPT) exposure in the whelk Reishia clavigera, which often serves as a biomonitor for OT contamination. Over a 120-day exposure to environmentally relevant concentrations of TBT (1000 ng L-1) and TPT (500 ng L-1), we observed a significant increase in penis length in both male and female whelks. Notably, TPT exhibited a stronger potency in inducing pseudo-penis development and female sterility, even at a half dose of TBT. Bioaccumulation analysis also revealed higher persistence and accumulation of TPT in whelk tissues compared to TBT. Differential expression analysis identified a substantial number of differentially expressed genes (DEGs), with TPT exposure eliciting more DEGs than TBT. Our results demonstrated that OTs induced xenobiotic metabolism and metabolic dysregulation in the digestive gland, impaired multiple cellular functions and triggered neurotoxicity in the nervous system, and disrupted lipid homeostasis and oxidative stress in the gonads. Furthermore, imposex was possibly associated with disturbances in retinoic acid metabolism, nuclear receptor signaling, and neuropeptide activity. When compared to TBT, TPT exhibited a more pronounced endocrine-disrupting effect, attributable to its higher bioaccumulation and substantial interruption of transcriptional regulation, OT detoxification, and biosynthesis of retinoic acids in R. clavigera. Our results, therefore, highlight the importance of considering the differences in bioaccumulation and molecular toxicity between TBT and TPT in future risk assessments of these contaminants. Overall, our study provided molecular insights into the toxicity and transcriptome profiles in R. clavigera exposed to TBT and TPT, shedding light on the endocrine-disrupting effects and reproductive impairment in female gastropods.


Subject(s)
Endocrine Disruptors , Gastropoda , Gene Expression Profiling , Organotin Compounds , Trialkyltin Compounds , Water Pollutants, Chemical , Animals , Trialkyltin Compounds/toxicity , Organotin Compounds/toxicity , Endocrine Disruptors/toxicity , Gastropoda/drug effects , Gastropoda/genetics , Female , Male , Water Pollutants, Chemical/toxicity , Transcriptome/drug effects , Disorders of Sex Development/chemically induced
4.
Acta Diabetol ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762618

ABSTRACT

OBJECTIVE: Although previous studies have suggested potential correlations between immunocytes and diabetic nephropathy (DN), the causal correlations between them remain unclarified. In this study, we employed Mendelian randomization (MR) to analyze the potential causative correlations between immune 731 cells and DN. METHODS: We used the Genome-Wide Association Studies (GWAS) database to aggregate signatures of immune cells and DN from European and East Asian populations. Single-nucleotide polymorphisms (SNPs) were used as instrumental variables. MR analysis was conducted using Mendelian randomization-Egger (MR-Egger) regression and the random-effects inverse-variance weighted (IVW) method. RESULTS: A total of 3,571 SNPs were included as instrumental variables. The MR-Egger regression model indicated no genetic pleiotropy (P = 0.6284). The results of the IVW method indicated a statistically significant causal relationship between immune cell HLA-DR on CD14-CD16- (P = 0.029), CD45RA-CD28-CD8 + T cell% T cells (P = 0.0278), CD11c on myeloid dendritic cells (P = 0.0352), HLA-DR on CD14+ monocytes (P < 0.001), CD27 on CD24 + CD27 + B cells (P = 0.0334), CD27 on IgD + CD24 + B cells (P = 0.0137), CD4 on CD39 + CD4 + T cells (P = 0.0347), CD28 on CD39 + CD4 + T cells (P = 0.0414), CD39 on CD39 + CD4 + T cells (P = 0.0426), and DN. Additionally, there was no heterogeneity in SNPs related HLA-DR on CD14-CD16-cells and DN(I2 = 32%, Cochran's Q = 2.9476, P = 0.2291). Moreover, leave-one-out analysis showed a causal correlation between HLA-DR on CD14-CD16- cells and DN. CONCLUSION: Higher expression of immune cell HLA-DR on CD14-CD16- cells may indicate a lower risk of DN.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124270, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38608559

ABSTRACT

Depression is a serious mental disease that causes grievous harm to human health and quality of life. The vesicular exocytosis of noradrenaline (NE), rather than its intrinsic intracellular concentration, is more associated with depression. Based on the reports on exocytosis of NE, it is reasonable to assume that the viscosity of cells has an important effect on the release of NE. Herein, a dual-response fluorescent probe (RHO-DCO-NE) for detecting NE and viscosity was designed and synthesized. The probe can simultaneously detect NE concentration and viscosity level with negligible crosstalk between the two channels. We utilized the probe to study the effect of viscosity changes on the NE release of PC12 and the corticosterone-induced PC12 cells. The experiment data revealed that the decrease in viscosity level can accelerate the release of NE of depression cell models. The finding provides new insight into the study of the pathological mechanisms of depression.


Subject(s)
Depression , Fluorescent Dyes , Norepinephrine , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , PC12 Cells , Norepinephrine/metabolism , Norepinephrine/analysis , Viscosity , Animals , Rats , Depression/drug therapy , Spectrometry, Fluorescence , Corticosterone/pharmacology
6.
Acad Radiol ; 31(8): 3306-3314, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38429187

ABSTRACT

RATIONALE AND OBJECTIVES: To investigate the impact of different regions of interest (ROI) on the assessment of shear wave elastography (SWE) in evaluating the meniscus of the knee joint. MATERIALS AND METHODS: After ethical approval, a total of 141 participants were enrolled in this prospective study from February to October 2023. SWE was utilized to evaluate the anterior horn of the lateral meniscus (LM) and medial meniscus (MM), using two different ROIs (ROI-Small and ROI-Trace) to measure the elastic mean value (Emean) and elastic maximum value (Emax). The differences in elasticity values between the normal menisci and torn menisci were compared, and the impact of different ROI selection methods on the diagnostic performance of elastic parameters in the torn menisci was assessed using receiver operating characteristic (ROC) curves. RESULTS: In Emean comparison, only MM in the tear group showed higher ROI-S than ROI-T. When comparing Emax, all ROI-T values were higher than the ROI-S values, and this difference was statistically significant. Different sizes of ROI did not significantly impact the diagnostic performance of Emean in LM and MM, nor the diagnostic effectiveness of Emax in LM. However, only the area under the curve (AUC) of MM for Emax in both ROI-S and ROI-T showed a statistically significant difference. CONCLUSION: The shear wave elasticity values and diagnostic performance may vary depending on the ROI settings. Therefore, it is recommended to use a 2 mm diameter ROI placed at the central position of the meniscus, with Emean as the elasticity index.


Subject(s)
Elasticity Imaging Techniques , Humans , Elasticity Imaging Techniques/methods , Female , Male , Prospective Studies , Adult , Middle Aged , Menisci, Tibial/diagnostic imaging , Tibial Meniscus Injuries/diagnostic imaging , Knee Joint/diagnostic imaging , Young Adult , Aged
7.
Bioorg Chem ; 146: 107296, 2024 May.
Article in English | MEDLINE | ID: mdl-38527389

ABSTRACT

Due to the serious harm of depression to human health and quality of life, an accurate diagnosis of depression is warranted. For the complex etiology of depression, a single biomarker diagnostic method often leads to misdiagnosis. As noradrenaline and HClO are closely related to depression, a "dual-locked" fluorescence probe R-NE-HClO for diagnosing of depression through the simultaneous detection of noradrenaline and HClO was designed and synthesized. Fluorescence of R-NE-HClO can only be restored in the presence of both noradrenaline and HClO. The probe demonstrates excellent selectivity for noradrenaline and HClO and low cytotoxicity in cell imaging experiments. It is to be observed that we successfully applied the probe to accurately detect depressed cells which provides a possible tool for diagnosing depression.


Subject(s)
Fluorescent Dyes , Norepinephrine , Depression , Hypochlorous Acid , Quality of Life , Humans
8.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38531780

ABSTRACT

Previous studies have revealed tight metabolic complementarity between bivalves and their endosymbiotic chemosynthetic bacteria, but little is known about their interactions with ectosymbionts. Our analysis of the ectosymbiosis between a deep-sea scallop (Catillopecten margaritatus) and a gammaproteobacterium showed that bivalves could be highly interdependent with their ectosymbionts as well. Our microscopic observation revealed abundant sulfur-oxidizing bacteria (SOB) on the surfaces of the gill epithelial cells. Microbial 16S rRNA gene amplicon sequencing of the gill tissues showed the dominance of the SOB. An analysis of the SOB genome showed that it is substantially smaller than its free-living relatives and has lost cellular components required for free-living. Genomic and transcriptomic analyses showed that this ectosymbiont relies on rhodanese-like proteins and SOX multienzyme complex for energy generation, mainly on the Calvin-Benson-Bassham (CBB) cycle and peripherally on a phosphoenolpyruvate carboxylase for carbon assimilation. Besides, the symbiont encodes an incomplete tricarboxylic acid (TCA) cycle. Observation of the scallop's digestive gland and its nitrogen metabolism pathways indicates it does not fully rely on the ectosymbiont for nutrition. Analysis of the host's gene expression provided evidence that it could offer intermediates for the ectosymbiont to complete its TCA cycle and some amino acid synthesis pathways using exosomes, and its phagosomes, endosomes, and lysosomes might be involved in harvesting nutrients from the symbionts. Overall, our study prompts us to rethink the intimacy between the hosts and ectosymbionts in Bivalvia and the evolution of chemosymbiosis in general.


Subject(s)
Bivalvia , Pectinidae , Animals , Symbiosis , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Bacteria , Genomics , Bivalvia/microbiology , Pectinidae/genetics , Genome, Bacterial , Phylogeny
9.
Talanta ; 270: 125615, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38169275

ABSTRACT

Putrescine (Butane-1,4-diamine) has been regarded as a vital marker of spoiling protein-rich foods, especially meat and seafood. The detection of putrescine in food is considered a convenient and powerful method for evaluating the degree of spoilage of protein-rich foods. Herein, a novel rhodol-based fluorescent probe RSMA (formyl-rhodol Schiff base with methoxyaniline) was developed to detect putrescine. RSMA exhibited excellent linearity (R2 = 0.9912) in the concentration range of 0-45 µM of putrescine with a detection limit as low as 0.45 µM. Although RSMA had moderate responses to some aliphatic diamines, the selectivity of RSMA for putrescine was one of the best reported in the literature so far. Moreover, RSMA was successfully fabricated to solid-state sensors for on-site detection of putrescine in shrimp, that demonstrated its application in monitoring food spoilage.


Subject(s)
Putrescine , Xanthones , Diamines , Meat/analysis
10.
Mar Pollut Bull ; 199: 116002, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181470

ABSTRACT

Bacteria play important roles in coral health, yet little is known about the dynamics of coral-associated bacterial communities during coral bleaching. Here, we reported the dynamic changes of bacterial communities in three scleractinian corals (Montipora peltiformis, Pavona decussata and Platygyra carnosa) during and after bleaching through amplicon sequencing. Our results revealed that the bacterial composition and dominant bacteria varied among the three coral species. The higher susceptibility of M. peltiformis to bleaching corresponded to a lower bacterial community diversity, and the dominant Synechococcus shifted in abundance during the bleaching and coral recovery phases. The resilient P. decussata and P. carnosa had higher bacterial diversity and a more similar bacterial composition between the healthy and bleached conditions. Overall, our study reveals the dynamic changes in coral-associated microbial diversity under different conditions, contributing to explaining the differential susceptibility of corals to extreme climate conditions.


Subject(s)
Anthozoa , Synechococcus , Animals , Anthozoa/microbiology , Hong Kong , Climate , Coral Reefs
11.
Mol Phylogenet Evol ; 190: 107968, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000707

ABSTRACT

Patellogastropoda, the true limpets, is a major group of gastropods widely distributed in marine habitats from the intertidal to deep sea. Though important for understanding their evolutionary radiation, the phylogenetic relationships among the patellogastropod families have always been challenging to reconstruct, with contradictory results likely due to insufficient sampling. Here, we obtained mitogenomic and phylogenomic data (transcriptomic or genomic) from six species representing the three predominantly deep-water patellogastropod families: Lepetidae, Neolepetopsidae, and Pectinodontidae. By using various phylogenetic methods, we show that mitogenome phylogeny recovers monophyly of eight families in most of the trees, though the relationships among families remain contentious. Meanwhile, a more robust family-level topology consistent with morphology was achieved by phylogenomics. This also reveals that these mainly deep-water families are monophyletic, suggesting a single colonisation of the deep water around the Jurassic. We also found a lack of significant correlation between genome size and habitat depth, despite some deep-water species exhibiting larger genome sizes. Our phylogenomic tree provides a stable phylogenetic backbone for Patellogastropoda that includes seven of the nine recognized families and paves the way for future evolutionary analyses in this major group of molluscs.


Subject(s)
Biological Evolution , Gastropoda , Humans , Animals , Phylogeny , Genomics , Gastropoda/genetics , Genome Size
12.
Mol Ecol ; 33(1): e17200, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37985390

ABSTRACT

Information on genetic divergence and migration patterns of vent- and seep-endemic macrobenthos can help delimit biogeographical provinces and provide scientific guidelines for deep-sea conservation under the growing threats of anthropogenic disturbances. Nevertheless, related studies are still scarce, impeding the informed conservation of these hotspots of deep-sea biodiversity. To bridge this knowledge gap, we conducted a population connectivity study on the galatheoid squat lobster Shinkaia crosnieri - a deep-sea foundation species widely distributed in vent and seep ecosystems in the Northwest Pacific. With the application of an interdisciplinary methodology involving population genomics and oceanographic approaches, we unveiled two semi-isolated lineages of S. crosnieri with limited and asymmetrical gene flow potentially shaped by the geographic settings, habitat types, and ocean currents - one comprising vent populations in the Okinawa Trough, with those inhabiting the southern trough area likely serving as the source; the other being the Jiaolong (JR) seep population in the South China Sea. The latter might have recently experienced a pronounced demographic contraction and exhibited genetic introgression from the Okinawa Trough lineage, potentially mediated by the intrusion of the North Pacific Intermediate Water. We then compared the biogeographic patterns between S. crosnieri and two other representative and co-occurring vent- and seep-endemic species using published data. Based on their biogeographical subdivisions and source-sink dynamics, we highlighted the southern Okinawa Trough vents and the JR seep warrant imperative conservation efforts to sustain the deep-sea biodiversity in the Northwest Pacific.


Subject(s)
Ecosystem , Hydrothermal Vents , Phylogeny , Biodiversity , Genetic Drift , China
13.
Proc Biol Sci ; 290(2009): 20231563, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37876192

ABSTRACT

Members of the phylum Cnidaria include sea anemones, corals and jellyfish, and have successfully colonized both marine and freshwater habitats throughout the world. The understanding of how cnidarians adapt to extreme environments such as the dark, high-pressure deep-sea habitat has been hindered by the lack of genomic information. Here, we report the first chromosome-level deep-sea cnidarian genome, of the anemone Actinernus sp., which was 1.39 Gbp in length and contained 44 970 gene models including 14 806 tRNA genes and 30 164 protein-coding genes. Analyses of homeobox genes revealed the longest chromosome hosts a mega-array of Hox cluster, HoxL, NK cluster and NKL homeobox genes; until now, such an array has only been hypothesized to have existed in ancient ancestral genomes. In addition to this striking arrangement of homeobox genes, analyses of microRNAs revealed cnidarian-specific complements that are distinctive for nested clades of these animals, presumably reflecting the progressive evolution of the gene regulatory networks in which they are embedded. Also, compared with other sea anemones, circadian rhythm genes were lost in Actinernus sp., which likely reflects adaptation to living in the dark. This high-quality genome of a deep-sea cnidarian thus reveals some of the likely molecular adaptations of this ecologically important group of metazoans to the extreme deep-sea environment. It also deepens our understanding of the evolution of genome content and organization of animals in general and cnidarians in particular, specifically from the viewpoint of key developmental control genes like the homeobox-encoding genes, where we find an array of genes that until now has only been hypothesized to have existed in the ancient ancestor that pre-dated both the cnidarians and bilaterians.


Subject(s)
Cnidaria , Sea Anemones , Animals , Sea Anemones/genetics , Genes, Homeobox , Phylogeny , Evolution, Molecular , Multigene Family
14.
J Ultrasound Med ; 42(12): 2859-2866, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37661827

ABSTRACT

OBJECTIVES: The aim of this study was to explore the application value of shear wave elastography in healthy adults with knee meniscus. METHODS: One hundred adult subjects who underwent health checkups at our hospital from December 2022 to February 2023 were selected as research participants. Shear wave elastography was used to evaluate the periphery of the lateral and medial meniscus in both knees. To assess the mean differences in Young's modulus values between male and female groups, a one-way analysis of variance (ANOVA) and independent samples t-test were conducted. In addition, a Pearson correlation coefficient test was used to analyze the correlation between the elastic values of the meniscus and age, height, weight, and body mass index (BMI). RESULTS: There were no significant differences in elastic values between the lateral meniscus of the left and right sides or between the medial meniscus of the left and right sides within the same gender group (P > .05). Stiffness values of the medial meniscus were higher in each gender group than those of the lateral meniscus (P < .01). Additionally, males demonstrated higher stiffness values than females (P < .01). As age increased, the Young's modulus of the meniscus increased significantly (r > .75, P < .01). CONCLUSION: Shear wave elastography can serve as an adjunctive tool to aid in the assessment of knee meniscal elasticity.


Subject(s)
Elasticity Imaging Techniques , Humans , Adult , Male , Female , Knee Joint/diagnostic imaging , Menisci, Tibial/diagnostic imaging , Body Mass Index , Elastic Modulus
15.
Zookeys ; 1173: 339-355, 2023.
Article in English | MEDLINE | ID: mdl-37588104

ABSTRACT

Podarkeopsischinensissp. nov. (Annelida, Hesionidae) is described based on specimens collected from the coast of southeast China. It is the first Podarkeopsis species described from the Indo-Pacific, although there are already nine valid Podarkeopsis species known from other parts of the world. This new species can be distinguished from the other Podarkeopsis species in having a palpostyle as long as the palpophore and double aciculae in both notopodia and neuropodia, and in bearing bifid furcate chaetae which have a smooth base on the shorter tine. A phylogenetic analysis based on the concatenated sequences of five gene fragments (COI, 16S rRNA, 18S rRNA, 28S rRNA, and histone H3) from 18 specimens of P.chinensissp. nov. showed that they formed a monophyletic clade that is sister to P.levifuscina. K2P genetic distances indicated that the four gene fragments (COI, 16S rRNA, 18S rRNA, and 28S rRNA) of P.chinensissp. nov. diverged from the corresponding sequences of the closest related species of Podarkeopsis in GenBank and BOLD Systems by 21.1-27.5%, 20.3-23.1%, 0.1-0.2%, and 2.1-3.2%. An identification key is provided for species in the genus Podarkeopsis.

16.
Mar Environ Res ; 190: 106110, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37537017

ABSTRACT

Scleractinian cold-water corals (CWCs) are one of the most important habitat engineers of the deep sea. Although the South China Sea (SCS) abuts the biodiversity center of scleractinian CWCs in the western Pacific, only a few sporadic records are available. We discovered new CWC sites by means of trawl sampling and video observation along the continental shelf of the northwestern SCS. All trawled scleractinian CWC specimens were identified to species level according to skeleton morphology and structure. The living CWCs and associated fauna recorded in the video were -identified to a higher level of classification. Scleractinian corals were identified to genus level, while non-scleractinian CWCs were identified to family level and given general names such as gorgonian corals, bamboo corals and black corals. Associated benthic dwellers were divided into major categories. A total of 28 scleractinian CWC species were identified to 7 families, 15 genera, and 1 additional subgenus. Among them, 13 species were colonial, including important habitat-forming species in the genera Eguchipsammia, Dendrophyllia and Cladopsammia. Non-scleractinian CWCs were identified to 7 families, including 4 families gorgonian corals, 1 family bamboo corals, and 2 families black corals. Gorgonian corals were the most abundant non-scleractinian CWCs in this region. Meanwhile, starfish, sea anemones, fish, gastropods, echinoderms, and other associated benthic fauna were recorded in the CWC habitats, with starfish belonging to the order Brisingida being most common. New scleractinian CWC assemblages were discovered along the continental seabed mounds in the northwestern SCS. This study highlights the remarkable diversity of cold-water scleractinian corals in the whole SCS, and shows the potential widespread distribution and conservation prospect of CWC habitats in this region.


Subject(s)
Anthozoa , Animals , Ecosystem , Water , Biodiversity , China
17.
Zool Stud ; 62: e26, 2023.
Article in English | MEDLINE | ID: mdl-37533558

ABSTRACT

Neolepetopsidae is a little-studied true limpet family only known from deep-sea chemosynthetic ecosystems, containing just over a dozen species in three genera: Neolepetopsis, Paralepetopsis, and Eulepetopsis. Although considered monophyletic by a recent phylogenetic analysis, a lack of Paralepetopsis sequence linked to morphology casts some uncertainty. Here, we discovered a new species of Paralepetopsis from the Haima methane seep in the South China Sea, described as Paralepetopsis polita sp. nov. The new species is distinct from all other described Paralepetopsis by its smooth and semi-transparent shell, combined with a radula exhibiting pluricuspid teeth with two cusps. We tested its relationship with other neolepetopsids using a molecular phylogeny reconstructed from the mitochondrial COI gene, revealing a surprising position nested within Lepetidae, a family with a very different radula morphology. The clade containing lepetids and our new species was recovered sister to other neolepetopsids with sequence data available. This hints at a paraphyletic Neolepetopsidae, and suggests the neolepetopsid-type radula might not be exclusive to one monophyletic group of limpets.

18.
Mol Ecol Resour ; 23(8): 1853-1867, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37486074

ABSTRACT

Previous studies have deciphered the genomic basis of host-symbiont metabolic complementarity in vestimentiferans, bathymodioline mussels, vesicomyid clams and Alviniconcha snails, yet little is known about the chemosynthetic symbiosis in Thyasiridae-a family of Bivalvia regarded as an excellent model in chemosymbiosis research due to their wide distribution in both deep-sea and shallow-water habitats. We report the first circular thyasirid symbiont genome, named Candidatus Ruthturnera sp. Tsphm01, with a size of 1.53 Mb, 1521 coding genes and 100% completeness. Compared to its free-living relatives, Ca. Ruthturnera sp. Tsphm01 genome is reduced, lacking components for chemotaxis, citric acid cycle and de novo biosynthesis of small molecules (e.g. amino acids and cofactors), indicating it is likely an obligate intracellular symbiont. Nevertheless, the symbiont retains complete genomic components of sulphur oxidation and assimilation of inorganic carbon, and these systems were highly and actively expressed. Moreover, the symbiont appears well-adapted to anoxic environment, including capable of anaerobic respiration (i.e. reductions of DMSO and nitrate) and possession of a low oxygen-adapted type of cytochrome c oxidase. Analysis of the host transcriptome revealed its metabolic complementarity to the incomplete metabolic pathways of the symbiont and the acquisition of nutrients from the symbiont via phagocytosis and exosome. By providing the first complete genome of reduced size in a thyasirid symbiont, this study enhances our understanding of the diversity of symbiosis that has enabled bivalves to thrive in chemosynthetic habitats. The resources will be widely used in phylogenetic, geographic and evolutionary studies of chemosynthetic bacteria and bivalves.


Subject(s)
Bivalvia , Methane , Animals , Phylogeny , Anaerobiosis , Genome , Bivalvia/genetics , Symbiosis/genetics
19.
Genome Biol Evol ; 15(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37401460

ABSTRACT

Deep-sea polynoid scale worms endemic to hydrothermal vents have evolved an adaptive strategy to the chronically hypoxic environment, but its underlying molecular mechanisms remain elusive. Here, we assembled a chromosome-scale genome of the vent-endemic scale worm Branchipolynoe longqiensis (the first annotated genome in the subclass Errantia) and annotated two shallow-water polynoid genomes, aiming to elucidate the adaptive mechanisms. We present a genome-wide molecular phylogeny of Annelida which calls for extensive taxonomy revision by including more genomes from key lineages. The B. longqiensis genome with a genome size of 1.86 Gb and 18 pseudochromosomes is larger than the genomes of two shallow-water polynoids, possibly due to the expansion of various transposable elements (TEs) and transposons. We revealed two interchromosomal rearrangements in B. longqiensis when compared with the two shallow-water polynoid genomes. The intron elongation and interchromosomal rearrangement can influence a number of biological processes, such as vesicle transport, microtubules, and transcription factors. Furthermore, the expansion of cytoskeleton-related gene families may favor the cell structure maintenance of B. longqiensis in the deep ocean. The expansion of synaptic vesicle exocytosis genes has possibly contributed to the unique complex structure of the nerve system in B. longqiensis. Finally, we uncovered an expansion of single-domain hemoglobin and a unique formation of tetra-domain hemoglobin via tandem duplications, which may be related to the adaptation to a hypoxic environment.


Subject(s)
Annelida , Hydrothermal Vents , Polychaeta , Animals , Annelida/genetics , Phylogeny , Hemoglobins/genetics , Polychaeta/genetics , Genomics , Water
SELECTION OF CITATIONS
SEARCH DETAIL