Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Opt Express ; 25(12): A502-A514, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28788881

ABSTRACT

Solution processable nanocrystal solar cells combine the advantages of low-cost printing and wide range of accessible absorber materials, however high trap densities limit performance and layer thickness. In this work we develop a versatile route to realize the infiltration of a photonic crystal, with copper indium diselenide nanocrystal ink. The photonic crystal allows to couple incident light into pseudo-guided modes and thereby enhanced light absorption. For the presented design, we are able to identify individual guided modes, explain the underlying physics, and obtain a perfect match between the measured and simulated absorption peaks. For our relatively low refractive index layers, a 7% maximum integrated absorption enhancement is demonstrated.

2.
Phys Chem Chem Phys ; 12(4): 902-8, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20066375

ABSTRACT

Separation of single-walled carbon nanotubes (SWNT) by diameter is an important prerequisite for controlled experimental studies and efficient application of these systems. By comparing experimental data with molecular dynamics (MD) simulations, we demonstrate that water filling has a significant, tube-diameter dependent effect on the effective mass density of individual single-walled carbon nanotubes suspended in aqueous surfactant suspensions. We present a model for the effective density of the nanotube-surfactant complex in aqueous solution that permits a comprehensive description of its density across the entire, experimentally relevant range of SWNT diameters. Parameters for this model can be obtained from molecular dynamics simulations and/or experiment and help explain the subtle interplay of surfactant coverage and endohedral water in the separation of a particular diameter species of SWNT by gradient centrifugation.

3.
J Chem Phys ; 129(13): 131101, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-19045071

ABSTRACT

With the atomistic Kubo-Verges method we calculate the ballistic conductance of various conformers of DNA (A,B,Z), as well as intermediate and composite conformations, using experimental structures and model complexes. For duplexes with 6 and 15 base pairs, we find that the valence band conductivity near the Fermi edge varies dramatically between the different conformations, most notably for the B-to-Z transition. The latter conductivity differences are largely unchanged both in the presence and in the absence of trimethylthiol linkers between DNA and gold electrodes in vacuo, but become much less drastic when explicit molecular dynamics and water-counterion surrounding of B- and Z-DNA are taken into account. Based on atomistic structural models, we argue that changes in the electrostatic energy in the presence of an applied external electric field can induce conformational switching that may be exploited in novel DNA-based memory devices of high packing density.


Subject(s)
DNA/chemistry , Electric Conductivity , Nucleic Acid Conformation , Base Sequence , DNA/genetics , Spectrum Analysis , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL