Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
An Acad Bras Cienc ; 96(4): e20231241, 2024.
Article in English | MEDLINE | ID: mdl-39383348

ABSTRACT

The present study was carried out to investigate the palynoflora of Murree formation using microscopic techniques to understand the climatic changes and vegetation's evolution. In this palynological study, 31 samples were collected, analyzed, and then identified as palynomorphs using different previous published literature. The results of this study will be described in terms of the evolutionary history of plants and the depositional environment of the reported taxa in the study area. The botanical affinities and systematic description of the taxa were examined using light and scanning electron microscopy. The floral record identified Asteraceae as the dominant family and Pinus as a genus. Most of angiosperms i.e Fabaceae and Poaceae, have a poor fossil record but have an abundant palynological record in the study area. The highest polar diameter (75.75 µm), colpus length (34.5 µm) and colpus width (31 µm) were examined for the Convolvulus. Most of the taxa explained here had a wide geographical occurrence in Southeast Asia and show the abundance of angiosperms in the Miocene epoch. The palynological record of Holocene samples is important to know about the vegetation's origin and environmental fluctuations in the study area.


Subject(s)
Fossils , Geologic Sediments , Microscopy, Electron, Scanning , Geologic Sediments/analysis , Pakistan , Paleontology , Climate Change
2.
RSC Adv ; 14(42): 30957-30970, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39346520

ABSTRACT

This study addresses the critical issue of removing organic pollutants from water, focusing on the photocatalytic degradation of Congo red (CR) dye using a novel ZnFe2O4@Co-Ni metal-organic framework (MOF) nanocomposite (ZFCNM). The primary aim was to develop a photocatalyst with enhanced efficiency by combining the properties of ZnFe2O4 with Co/Ni-MOF, leading to a low band gap (2.89 eV) and a high surface area (723 m2 g-1). The ZFCNM nanocomposite, synthesized via a hydrothermal method, was characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), confirming the formation of face-centered cubic ferrite and hexagonal MOF structures. Fourier-transform infrared spectroscopy (FTIR) verified the presence of carboxyl (-COOH) groups and Fe-O bonds in the composite. Photodegradation efficiency was evaluated under varying conditions, including reaction time, pH, catalyst dosage, contaminant concentration, and light intensity. The ZFCNM photocatalyst, with an equal mass ratio of Co/Ni-MOF and ZnFe2O4, achieved a 98% removal efficiency of CR (75 min reaction time, pH 5, at 25 °C, and visible-light intensity of a 50 W LED lamp) significantly outperforming Co/Ni-MOF (24%) and ZnFe2O4 (36%) alone. The estimated quantum yield (QY) was 3.00 × 10-6 molecules per photon, and kinetic studies revealed a first-order reaction pathway with an R 2 value of 0.9813. These results highlight the potential of ZFCNM as an effective photocatalyst for water purification applications.

3.
ACS Omega ; 9(30): 32799-32806, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39100282

ABSTRACT

The aphid, Schizaphis graminum Rondani (Hemiptera: Aphididae), is one of the most destructive pests of wheat. It is responsible for significant economic losses in the agricultural sector, with an estimated 45% of wheat fields affected. Plant-based insecticides have seen a rapid increase in popularity in recent years due to their efficacy, cost-effectiveness, biodegradability, and lower toxicity compared to synthetic pesticides. The study aimed to evaluate the toxic potential of S. longipedunculata extracts against S. graminum and investigate the insect's feeding behavior on wheat. Initially macerated in methanol, the different extracts of S. longipedunculata organs were fractionated using n-hexane, chloroform, ethyl acetate, and butanol. The feeding behavior was analyzed by comparing the waveforms generated by the EPG with the control. After 72 h of treatment, the ethyl acetate fraction extracted from root had the highest toxicity against aphids, with mean 26 mortality of S. graminum at LC50 of 330 ppm; 25 mortality S. graminum at LC50 of 400 ppm for leaves; and mean 24.5 mortality S. graminum at LC50 of 540 ppm in stem bark. EPG analysis indicated that the extract fractions enhanced plant tissue resistance by significantly preventing aphid access to the phloem. The toxic effect of the botanical extracts significantly enhanced the chemical composition of the leaf medium, resulting in a drastic reduction in the number of tissue attacks by S. graminum. In summary, besides their toxicity to S. graminum, extracts of S. longipedunculata reinforce the plant's defense mechanisms, significantly reducing the S. graminum population. They also reinforce wheat's defense mechanisms. S. longipedunculata can, therefore, be used as a promising agent in the biological control of S. graminum.

4.
Sci Rep ; 14(1): 14802, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926468

ABSTRACT

Long-chain polyunsaturated fatty acids (LCPUFA) are of interest due to their potential health properties and have a significant role in reducing the risk of various chronic diseases in humans. It is commonly used as a supplement. However, lipid oxidation is an important negative factor caused by environmental, processing, and limited water solubility of LCPUFA, making them difficult to incorporate into food products. The objective of this research work was to prevent oxidation, extend shelf life, enhance the stability of fatty acids, and to achieve controlled release by preparing spray-dried powder (SDM). For spray-drying, aqueous emulsion blends were formulated using a 1:1 ratio of chia seed oil (CSO) and fish oil (FO) and using a laboratory-scale spray-dryer with varying conditions: inlet air temperature (IAT, 125-185 °C), wall material (WM, 5-25%), pump speed (PS, 3-7 mL/min), and needle speed (NS, 3-11 s). The maximum alpha-linolenic acid (ALA) content was 33 ± 1%. The highest values of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the microcapsules were 8.4 ± 0.4 and 13 ± 1%, respectively. Fourier transform infrared and X-Ray diffraction analysis results indicated that SDM was successfully formulated with Gum Arabic and maltodextrin (MD). The blending without encapsulation of CSO and FO was digested more efficiently and resulted in more oil being released with simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and SGF + SIF conditions without heating. No significant changes were observed for saturated, monounsaturated, and LCPUFA, whether exposed or not to gastrointestinal conditions. However, compared to the release of SDM, it can be useful for designing delivery systems for the controlled release of essential fatty acids.


Subject(s)
Capsules , Fish Oils , Spray Drying , Fish Oils/chemistry , Plant Oils/chemistry , Salvia/chemistry , Fatty Acids/chemistry , Humans
5.
Microsc Microanal ; 30(3): 594-606, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38804203

ABSTRACT

Pollen micromorphological traits with taxonomic implications are first reported from the study area for 50 Asteraceous taxa belonging to nine tribes. Cichorieae (21 taxa), Cardueae (11 taxa), Inuleae (six taxa), and Anthemideae (four taxa) are the leading tribes. The research included Cousinia haeckeliae, Himalaiella afghana, Pterachaenia stewartii (endemic to Afghanistan and Pakistan), and Xylanthemum macropodum (endemic to Baluchistan). Light and scanning electron microscopy were employed for the visualization of pollen photomicrographs. The data was analyzed statistically via SPSS, PAST, and Origin. Significant diagnostic qualitative and quantitative palynological traits were explored for discrimination down to the species level within the tribes. All the investigated taxa possessed radial symmetry, isopolarity, and monad form (characters for distinction at the subdivision level). The aperture types were trizonocolporate, tetrazonocolporate, and tricolporate with number position and character (NPC) formulas N3P4C5, N4P4C5, and N3P4C3. Goniotreme, peritreme, and ptychotreme types of amb were recognized. Echinate, echinate lophate, scabrate, and gemmate sculpturing were present with and without perforated surface patterns. Variations in the shapes in polar and equatorial views and lacuna shapes further assisted the separation of taxa. The observed shape classes were perprolate, prolate spheroidal, prolate, subprolate, oblate spheroidal, suboblate, and oblate. Principal component analysis, correlation, standard probability plots, and ridge line paired features plot for quantitative variables determined the positive correlation between the length and width of colpi in equatorial and polar view with polar axis and equatorial diameter and number of spines between colpi with the number of spines per pollen. The number of spines per pollen was negatively correlated with the width and length of colpi in the polar view. Multiple sample analysis of variance (ANOVA) concluded that a high statistically significant difference exists among the means of analyzed traits. The examined qualitative and quantitative palynological traits revealed noticeable variations, thus providing the source for species discrimination in Asteraceous tribes.


Subject(s)
Microscopy , Pollen , Pakistan , Pollen/ultrastructure , Microscopy/methods , Asteraceae , Biodiversity , Microscopy, Electron, Scanning
6.
Molecules ; 29(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474560

ABSTRACT

Phlomis stewartii is a wild, perennial woody plant used for diverse therapeutic targets. The present work evaluated the influence of independent variables such as extraction time, solvent concentration, and speed in the range of (100 mL, 150 mL, and 200 mL), (2 h, 5 h, and 8 h), and (100 rpm, 150 rpm, and 200 rpm), respectively, on extraction yields, phytochemical components, total phenolic contents (TPC), and total flavonoid contents (TFC) of P. stewartii extract. In the present work, response surface methodology (RSM) was applied to optimize the extraction yield. High-performance liquid chromatography (HPLC) was performed to detect the bioactive constituents of the extracts. The potent extracts were analyzed to study α-amylase and α-glucosidase inhibitory activities. Under the optimized conditions of solvent concentration (200 mL), extraction time (8 h), and speed (150 rpm), the whole plant methanol extract (WPME) showed a maximum extraction yield of 13.5%, while the leaves methanol extract (LME) showed a maximum TPC of 19.5 ± 44 mg of gallic acid equivalent (GAE) per gram of extract and a maximum TFC of 4.78 ± 0.34 mg of quercetin equivalent (QE) per gram of extract. HPLC analysis showed the presence of p-coumaric, gallic acid, quercetin, salicylic acid, sinapic acid, and vanillic acid. LME showed the highest α-amylase inhibitory activity (IC50 = 46.86 ± 0.21 µg/mL) and α-glucosidase inhibitory activity (IC50 value of 45.81 ± 0.17 µg/mL). Therefore, in conclusion, LME could be considered to fix the α-amylase and α-glucosidase-mediated disorders in the human body to develop herbal phytomedicine.


Subject(s)
Phlomis , Humans , Quercetin , Methanol , alpha-Glucosidases , Plant Extracts/chemistry , Solvents/chemistry , alpha-Amylases , Phytochemicals/chemistry , Gallic Acid , Antioxidants/chemistry , Flavonoids/pharmacology
7.
Environ Sci Pollut Res Int ; 31(17): 25616-25636, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38478307

ABSTRACT

The increasing interest in utilizing olive pomace bioactive molecules to advance functional elements and produce antioxidant and antimicrobial additives underscores the need for eco-friendly extraction and purification methods. This study aims to develop an eco-friendly extraction method to evaluate the effect of extraction parameters on the recovery of bioactive molecules from enriched olive pomace. The effects were identified based on total phenolic and flavonoid contents and antioxidant activity, employing a design of experimental methodology. The positive and the negative simultaneous effects showed that among the tested enrichments, those incorporating Nigella Sativa, dates, and coffee demonstrated superior results in terms of the measured responses. Furthermore, chromatographic analysis unveiled the existence of intriguing compounds such as hydroxytyrosol, tyrosol, and squalene in distinct proportions. Beyond this, our study delved into the structural composition of the enriched pomace through FTIR analysis, providing valuable insights into the functional groups and chemical bonds present. Concurrently, antimicrobial assays demonstrated the potent inhibitory effects of these enriched extracts against various microorganisms, underscoring their potential applications in food preservation and safety. These findings highlight enriched olive pomace as a valuable reservoir of bioactive molecules for food products since they can enhance their anti-oxidative activity and contribute to a sustainable circular economy model for olive oil industries.


Subject(s)
Anti-Infective Agents , Olea , Olea/chemistry , Antioxidants/pharmacology , Phenols/analysis , Olive Oil/chemistry , Anti-Bacterial Agents
8.
Biomed Chromatogr ; 38(2): e5774, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37972935

ABSTRACT

Considering the limited data available on tree species in Uzbekistan, this research aimed to provide new insights. We gathered plant samples from different locations within Samarkand city and thoughtfully selected 15 tree species that represent the country's flora. Using scanning electron microscopy, we conducted comprehensive analyses of pollen morphology, revealing a diverse range of variations in the shapes, dimensions, and surface characteristics displayed by pollen grains. Distinct ornamentations such as micro-echinate, reticulate, rugulate, gemmate-verrucate, and verrucate-scabrate patterns facilitated the differentiation of species. These scanning electron microscopy findings enhance our comprehension of tree species diversity, adaptation, and ecological roles. In addition, leaf extracts were analyzed using HPLC and GC-MS, revealing a plethora of bioactive compounds, including catechins, chlorogenic acid, vanillic acid, and others. Furthermore, GC-MS analysis revealed the presence of seven key compounds, including 1-hexadecyne, 2-chloroethanol, 1,6-heptadiene, 2-methyl-, 5-bromoadamantan-2-one, ethyl 3-(3-pyridyl) propenoate, bis (2-ethylhexyl) phthalate, and quercetin. This study demonstrates the effectiveness of this method in assessing the quality of leaf extracts from tree species by examining both microscopic characteristics and chemical composition. This multifaceted approach has deepened our understanding of the characteristics and chemical compositions of these trees, thus contributing to a more profound appreciation of their ecological significance and potential applications.


Subject(s)
Allergens , Trees , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Microscopy, Electron, Scanning
9.
J Environ Manage ; 350: 119567, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38007927

ABSTRACT

Dealing with the current defaults of environmental toxicity, heating, waste management, and economic crises, exploration of novel non-edible, toxic, and waste feedstock for renewable biodiesel synthesis is the need of the hour. The present study is concerned with Buxus papillosa with seeds oil concentration (45% w/w), a promising biodiesel feedstock encountering environmental defaults and waste management; in addition, this research performed simulation based-response surface methodology (RSM) for Buxus papillosa bio-diesel. Synthesis and application of novel Phyto-nanocatalyst bimetallic oxide with Buxus papillosa fruit capsule aqueous extract was advantageous during transesterification. Characterization of sodium/potassium oxide Phyto-nanocatalyst confirmed 23.5 nm nano-size and enhanced catalytic activity. Other characterizing tools are FTIR, DRS, XRD, Zeta potential, SEM, and EDX. Methyl ester formation was authenticated by FTIR, GC-MS, and NMR. A maximum 97% yield was obtained at optimized conditions i.e., methanol ratio to oil (8:1), catalyst amount (0.37 wt%), reaction duration (180 min), and temperature of 80 °C. The reusability of novel sodium/potassium oxide was checked for six reactions. Buxus papillosa fuel properties were within the international restrictions of fuel. The sulphur content of 0.00090% signified the environmental remedial nature of Buxus papillosa methyl esters and it is a highly recommendable species for biodiesel production at large scale due to a t huge number of seeds production and vast distribution.


Subject(s)
Buxus , Waste Management , Hazardous Waste , Biofuels/analysis , Esters , Catalysis , Sodium , Plant Oils
11.
Food Sci Technol Int ; : 10820132231207904, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37844615

ABSTRACT

This study investigated the application of black cumin meal (BCM) obtained from cold-pressing Nigella sativa seeds in bread baking. The effect of BCM on bread rheological traits and its nutritional value were investigated. Zeleny sedimentation, falling number, Farinograph, and Extensograph values in flour mixed with BCM (2.5%, 5%, 7.5%, and 10%) were evaluated. In addition, mineral content, protein, fat, thymoquinone, and crude cellulose contents in bread were investigated. Zeleny sedimentation and falling number values decreased with the increase in BCM in the flour samples. The water absorption, development time, stability, and softening degree values of the dough measured in the Farinograph device did not show a statistically significant difference in the flour with the BCM mixture compared to the control sample. The energy value and extensibility determined in the Extensograph device decreased with the increase in the amount of BCM in the flour. The amount of protein and crude fiber in bread increased with the increase in the amount of BCM. It was noted that there were significant increases in Fe, Ca, Mg, K, and Zn levels with the increase in BCM. Meanwhile, thymoquinone was not found in the bread samples containing BCM. The results revealed that the nutritional values of BCM-mixed bread are rich in protein, minerals, and cellulose.

12.
Microsc Microanal ; 29(4): 1531-1555, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37488823

ABSTRACT

This study examines the role of light microscopic (LM) and scanning electron microscopic (SEM) micromorphological traits of the epidermis in identifying and classifying invasive plants. SEM was conducted to increase our understanding of microscopic qualities that are not visible in light microscopy and to elucidate unclear affinities among invasive species. The study examines invasive species' morphological and anatomical characteristics from the Pothohar Plateau of Pakistan for the first time. The results showed that various micromorphological features are very useful for species' accurate identification. Adaxial and abaxial surfaces of leaves showed variations in subsidiary cells, glands, anticlinal wall patterns, stomata, and epidermal cells. Epidermal cell shapes observed were irregular, elongated, rectangular, and polygonal. Epidermal cells having maximum length were calculated in Stellaria media (126.3 µm) on adaxial side. On the abaxial surface, the minimum length was noticed in Eucalyptus camaldulensis (28.5 µm). Both glandular and nonglandular trichomes were examined, ranging from unicellular to multicellular. Most of the investigated specimens of leaves were amphistomatic, while some were hypostomatic, like Alternanthera pungens, Calotropis procera, Cannabis sativa, Lantana camara, and Thevetia peruviana. Leaf epidermal morphology contains numerous useful systematic features for accurate identifications of plant species. The micromorphological attributes under observation provide a standard criterion to the researcher for identifications of invasive flora in future morpho-taxonomic studies.


Subject(s)
Plant Epidermis , Trichomes , Trichomes/ultrastructure , Plant Epidermis/anatomy & histology , Plant Stomata/ultrastructure , Introduced Species , Plant Leaves , Microscopy, Electron, Scanning , Epidermal Cells/ultrastructure , Epidermis
13.
Metabolites ; 13(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37512523

ABSTRACT

Date palm (Phoenix dactylifera L.) fruits contain high concentrations of phenolic compounds, particularly flavonoids and other micronutrients, which impact human health due to their potent antioxidant, anti-inflammatory, and anticancer characteristics. In the present study, the effect of ethyl acetate, hydroethanol, hydromethanol, and aqueous extract from three date palm varieties (i.e., Ajwa, Siwi, and Sukkari) on phytochemical profiles and antioxidant and anticancer activities was investigated. Fruit extracts were screened for their antioxidant activity using the DPPH· method. Phenolic constituents were quantified and identified using HPLC-DAD. Extracts (ethyl acetate, hydroethanol, and hydromethanol) were assessed for cytotoxicity on nine human cancer cell lines, i.e., MG-63, HCT116, MCF7, MDA-MB-231, HEPG2, HUH7, A549, H460, and HFB4, using the sulphorhodamine-B (SRB) assay. Results showed that the ethyl acetate extract of the Sukkari fruits has the greatest antioxidant potential with an IC50 value of 132.4 ± 0.3 µg·mL-1, while the aqueous extract of Ajwa date fruits exhibited the lowest antioxidant effect with an IC50 value of 867.1 ± 0.3 µg·mL-1. The extracts exhibited potent to moderate anticancer activities against the investigated cancer cell line in a source-dependent manner. Methanol extract of Siwi fruits exhibited the most potent anticancer activity (IC50 = 99 ± 1.6 µg·mL-1), followed by the same extract of Sukkari fruits with an IC50 value of 119 ± 3.5 µg·mL-1 against the cell line of human breast cancer (MDA-MB-231). Additionally, principal component analysis (PCA) was investigated to determine the relationship among the investigated traits and treatments. Our findings reveal that date palm fruit-derived extracts are excellent sources of biologically active constituents and substantiate their potential use in new anticancer strategies from natural resources.

15.
Foods ; 12(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37048350

ABSTRACT

This study aimed to investigate the potential use of cold-pressed hot pepper seed oil by-product (HPOB) in a low-fat salad dressing to improve its rheological properties, emulsion, and oxidative stability. The total phenolic content (TPC), the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and CUPRIC reducing antioxidant capacity (CUPRAC) values were 317.4 mg GAE/100 g, 81.87%, and 6952.8 mg Trolox/100 g, respectively. The capsaicin, dihydrocapsaicin, and total carotenoid content were 175.8 mg/100 g, 71.01 mg/100 g, and 106.3 µg/g, respectively. All emulsions indicated shear-thinning, viscoelastic solid-like behavior, and recoverable characteristics, which were improved via enrichment with HPOB. The thermal loop test showed that the low-fat sample formulated with 3% HPOB indicated little change in the G* value, showing that it exhibited high emulsion stability. The induction period values (IP) of the salad dressing samples containing HPOB (between 6.33 h and 8.33 h) were higher than the IP values of the control samples (3.20 h and 2.58 h). The enrichment with HPOB retarded the formation of oxidative volatile compounds of hexanal, nonanal, and 1-octene-3-ol. According to the results presented in this study, HPOB could be effectively used in a low-fat salad dressing to enhance its rheological characteristics and oxidative stability.

16.
Chemosphere ; 319: 137994, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36720415

ABSTRACT

Better processing techniques must be utilized widely due to the rising demand for honey. The most common honey processing techniques are applied to melissopalynomorphs to check the quality and quantity of valuable honey using microporous ultrafiltration membranes. It is essential to have the ability to selectively filter out sugars from honey using ultrafiltration. This study authenticated 24 honey samples using membrane reactors ultrafiltration protocol to describe the pollen spectrum of dominant vegetation. The purpose of this study was also to explore nutritional benefits as well as the active phytochemical constituents of honey samples. Honey samples were collected and labeled Acacia, Eucalyptus, and Ziziphus species based on plant resources provided by local beekeepers. A variety of honeybee flora was collected around the apiaries between 2020 and 2021. Honey analysis revealed that the pollen extraction of 24 bee foraging species belonging to 14 families. The honey membrane technology verified the identities of honey and nectar sources. Also, pollen identified using honey ultrafiltration membranes revealed dominant resources: Acacia spp. (69%), Eucalyptus spp. (52%) and Ziziphus spp. Honey filtration using a membrane technology classified 14 samples as unifloral, represented by six dominant pollen types. The absolute pollen count in the honey sample revealed that 58.33% (n = 14) belong to Maurizio's class I. Scanning ultrasculpturing showed diverse exine patterns: reticulate, psilate, scabrate-verrucate, scabrate-gemmate, granulate, perforate, microechinate, microreticulate, and regulate to fossulate for correct identification of honey pollen types. Honey ultrafiltration should be utilized to validate the botanical sources of honey and trace their biogeographic authenticity. Thus, it is imperative to look at the alternative useful method to identify the botanical origin of filtered honey. It is critical to separate honey from adulteration by a standardized protocol. Membrane technology has yielded significant outcomes in the purification of honey.


Subject(s)
Eucalyptus , Honey , Bees , Animals , Honey/analysis , Pollen/chemistry , Plants , Plant Nectar , Eucalyptus/chemistry
17.
Plants (Basel) ; 11(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36501313

ABSTRACT

This research examined the histological micro-structure of tendril vasculature in cucurbitaceous taxa. In this research, the tendril anatomy of 17 taxa of Cucurbitaceae categorized into seven genera, including Cucumis (five species), Cucurbita and Luffa (three species each), Citrullus and Momordica (two species each) while Lagenaria and Praecitrullus (one species each), collected from different areas of the Thal desert were examined via microscopic imaging to explore its taxonomic significance. Tendril transverse sections were cut with a Shandon Microtome to prepare slides. The distinctive characteristics of taxonomic value (qualitative and quantitative) include tendril and vascular bundle shape, variation in the number of vascular bundles, tendril diameter length, layers of sclerenchyma, and shape of collenchyma and epidermal cells. Tendril shapes observed are irregular, slightly oval-shaped, slightly C shaped, angular (4-angled, 6-angled, or polygonal), and star shaped. Quantitative measurements were taken to analyze the data statistically using SPSS software. Cucurbita pepo had a maximum tendril diameter length of 656.1 µm and a minimum in Momordica balsamina of 123.05 µm. The highest number of vascular bundles (12) were noticed in Luffa acutangula var.amara. Angular type was prominent in collenchyma, and irregular shape was dominant in sclerenchyma cells. A maximum of seven to nine sclerenchyma layers were present in Lagenaria siceraria and a minimum of two or three layers in Cucumis melo subsp. agrestis, Cucumis melo var. flexuosus, and Cucumis melo var.cantalupensis. Epidermis cells also show great variations with a rectangular shape being dominant. Statistical UPGMA dendrogram clustering of tendril vasculature traits shows that histological sections studied with microscopic techniques can be used to identify species and will play a vital role in future taxonomic and phylogenic linkages.

19.
Environ Sci Pollut Res Int ; 29(58): 87184-87199, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35802336

ABSTRACT

Topiramate has multiple pharmacological mechanisms that are efficient in treating epilepsy and migraine. Ginger has been established to have gingerols and shogaols that cause migraine relief. Moreover, Topiramate has many off-label uses. Thus, it was necessary to explore the possible neurotoxicity of Topiramate and the role of ginger oil in attenuating the Topiramate neurotoxicity. Male albino mice were orally gavaged with Topiramate, ginger oil (400 mg/kg), and Topiramate plus ginger oil with the same pattern for 28 days. Oxidative stress markers, acetylcholinesterase (AchE), gamma-aminobutyric acid (GABA), and tumor necrosis factor-alpha (TNF-α) were examined. Histopathological examination, immunohistochemical glial fibrillary acidic protein (GFAP), and Bax expression analysis were detected. The GABAAR subunits, Gabra1, Gabra3, and Gabra5 expression, were assessed by RT-qPCR. The investigation showed that Topiramate raised oxidative stress markers levels, neurotransmitters, TNF-α, and diminished glutathione (GSH). In addition, Topiramate exhibited various neuropathological alterations, strong Bax, and GFAP immune-reactivity in the cerebral cortex. At the same time, the results indicated that ginger oil had no neurotoxicity. The effect of Topiramate plus ginger oil alleviated the changes induced by Topiramate in the tested parameters. Both Topiramate and ginger oil upregulated the mRNA expression of gabra1 and gabra3, while their interaction markedly downregulated them. Therefore, it could be concluded that the Topiramate overdose could cause neurotoxicity, but the interaction with ginger oil may reduce Topiramate-induced neurotoxicity and should be taken in parallel.


Subject(s)
Migraine Disorders , Oils, Volatile , Zingiber officinale , Animals , Male , Mice , Topiramate/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Acetylcholinesterase/metabolism , bcl-2-Associated X Protein/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Plant Extracts/pharmacology , Glutathione/metabolism , Brain , Migraine Disorders/drug therapy , Migraine Disorders/pathology
20.
Front Bioeng Biotechnol ; 10: 888827, 2022.
Article in English | MEDLINE | ID: mdl-35814014

ABSTRACT

To improve food production via fermentation with co-cultures of microorganisms (e.g., multiple lactic acid bacteria-LAB strains), one must fully understand their metabolism and interaction patterns in various conditions. For example, LAB can bring added quality to bread by releasing several bioactive compounds when adding soy flour to wheat flour, thus revealing the great potential for functional food development. In the present work, the fermentation of three soy and wheat flour mixtures is studied using single cultures and co-cultures of Lactobacillus plantarum and Lactobacillus casei. Bio-chemical processes often require a significant amount of time to obtain the optimal amount of final product; creating a mathematical model can gain important information and aids in the optimization of the process. Consequently, mathematical modeling is used to optimize the fermentation process by following these LAB's growth kinetics and viability. The present work uses both multiple regression and artificial neural networks (ANN) to obtain the necessary mathematical model, useful in both prediction and process optimization. The main objective is to find a model with optimal performances, evaluated using an ANOVA test. To validate each obtained model, the simulation results are compared with the experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL