Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446098

ABSTRACT

Glypican-3 (GPC-3) is a heparin sulfate proteoglycan located extracellularly and anchored to the cell membrane of transformed hepatocytes. GPC-3 is not expressed in normal or cirrhotic liver tissue but is overexpressed in hepatocellular carcinoma (HCC). Because of this, GPC-3 is one of the most important emerging immunotargets for treatment and as an early detection marker of HCC. To determine if GPC-3 domains associated with serum small extracellular vesicles (sEVs) could be used as an HCC diagnostic marker, we predicted in silico GPC-3 structural properties and tested for the presence of its full-length form and/or cleaved domains in serum sEVs isolated from patients with HCC. Structural analysis revealed that the Furin cleavage site of GPC-3 is exposed and readily accessible, suggesting the facilitation of GPC-3 cleavage events. Upon isolation of sEVs from both hepatocytes, culture media and serum of patients with HCC were studied for GPC-3 content. This data suggests that Furin-dependent GPC-3 cleaved domains could be a powerful tool for detection of initial stages of HCC and serve as a predictor for disease prognosis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Furin , Glypicans/metabolism , Biomarkers, Tumor/metabolism
2.
Alcohol Clin Exp Res ; 45(5): 961-978, 2021 05.
Article in English | MEDLINE | ID: mdl-33690904

ABSTRACT

BACKGROUND: Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disorder of the exocrine pancreatic gland. A previous study from this laboratory showed that ethanol (EtOH) causes cytotoxicity, dysregulates AMPKα and ER/oxidative stress signaling, and induces inflammatory responses in primary human pancreatic acinar cells (hPACs). Here we examined the differential cytotoxicity of EtOH and its oxidative (acetaldehyde) and nonoxidative (fatty acid ethyl esters; FAEEs) metabolites in hPACs was examined to understand the metabolic basis and mechanism of ACP. METHODS: We evaluated concentration-dependent cytotoxicity, AMPKα inactivation, ER/oxidative stress, and inflammatory responses in hPACs by incubating them for 6 h with EtOH, acetaldehyde, or FAEEs at clinically relevant concentrations reported in alcoholic subjects using conventional methods. Cellular bioenergetics (mitochondrial stress and a real-time ATP production rate) were determined using Seahorse XFp Extracellular Flux Analyzer in AR42J cells treated with acetaldehyde or FAEEs. RESULTS: We observed concentration-dependent increases in LDH release, inactivation of AMPKα along with upregulation of ACC1 and FAS (key lipogenic proteins), downregulation of p-LKB1 (an oxidative stress-sensitive upstream kinase regulating AMPKα) and CPT1A (involved in ß-oxidation of fatty acids) in hPACs treated with EtOH, acetaldehyde, or FAEEs. Concentration-dependent increases in oxidative stress and ER stress as measured by GRP78, unspliced XBP1, p-eIF2α, and CHOP along with activation of p-JNK1/2, p-ERK1/2, and p-P38MAPK were present in cells treated with EtOH, acetaldehyde, or FAEEs, respectively. Furthermore, a significant decrease was observed in the total ATP production rate with subsequent mitochondrial stress in AR42J cells treated with acetaldehyde and FAEEs. CONCLUSIONS: EtOH and its metabolites, acetaldehyde and FAEEs, caused cytotoxicity, ER/oxidative and mitochondrial stress, and dysregulated AMPKα signaling, suggesting a key role of EtOH metabolism in the etiopathogenesis of ACP. Because oxidative EtOH metabolism is negligible in the exocrine pancreas, the pathogenesis of ACP could be attributable to the formation of FAEEs and related pancreatic acinar cell injury.


Subject(s)
Acinar Cells/drug effects , Central Nervous System Depressants/pharmacology , Endoplasmic Reticulum Stress/drug effects , Ethanol/pharmacology , Mitochondria/drug effects , Oxidative Stress/drug effects , Pancreas/cytology , AMP-Activated Protein Kinase Kinases/drug effects , AMP-Activated Protein Kinase Kinases/metabolism , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Acetaldehyde/pharmacology , Acetyl-CoA Carboxylase/drug effects , Acetyl-CoA Carboxylase/metabolism , Acinar Cells/metabolism , Carnitine O-Palmitoyltransferase/drug effects , Carnitine O-Palmitoyltransferase/metabolism , Cell Survival/drug effects , Esters/pharmacology , Humans , Mitochondria/metabolism , Mitogen-Activated Protein Kinase 1/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/drug effects , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 8/drug effects , Mitogen-Activated Protein Kinase 8/metabolism , Mitogen-Activated Protein Kinase 9/drug effects , Mitogen-Activated Protein Kinase 9/metabolism
4.
Cell Oncol (Dordr) ; 41(2): 169-184, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29204978

ABSTRACT

BACKGROUND: Recently, Glypican-3 (GPC3) has been identified as a potential hepatocellular carcinoma (HCC) diagnostic and/or therapeutic target. GPC3 has been found to be up-regulated in HCC and to be absent in normal and cirrhotic liver. As yet, however, the molecular characteristics of GPC3 and its role in HCC cell physiology and development are still undefined. METHODS: Human hepatocyte cultures were established from 10 HCC patients. Additional liver samples were obtained from 5 patients without cirrhosis and/or HCC. Soft agar colony formation, (co-)immunofluorescence and Western blot assays were used to characterize the hapatocyte cultures. The expression of GPC3 in the hepatocytes was silenced using siRNA, after which, apoptosis, scratch wound migration and transwell invasion assays were performed. RESULTS: We found that in HCC precursor hepatocytes GPC3 is increasingly expressed in different forms and at different locations, i.e., a non-cleaved form (70 kDa) was found to be localized in the cytoplasm while a N-terminal cleaved form (N-GPC3: 40 kDa) was fond to be localized in the cytoplasm and at the extracellular side of hepatocyte membranes. In addition, we found that the non-cleaved form of GPC3 co-localizes with Furin-Convertase in the Golgi apparatus. We also found that, similar to GPC3, Furin-Convertase is expressed in HCC precursor cells, suggesting a role in GPC3 processing. Subsequent siRNA-mediated GPC3 silencing resulted in a temporary inhibition of cell proliferation, migration and ivasion, while inducing apoptosis in transformed hepatocytes. CONCLUSION: Our data reveal new aspects of the role of GPC3 in early hepatocyte transformation. In addition we conclude that GPC3 may serve as a new HCC immune-therapeutic target.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Glypicans/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/physiology , Cells, Cultured , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , RNA, Small Interfering/metabolism
5.
Liver Cancer ; 6(4): 287-296, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29234632

ABSTRACT

INTRODUCTION: Primary liver cancer is a significant cause of cancer-related death in both the United States and the world at large. Hepatocellular carcinoma comprises 90% of these primary liver cancers and has numerous known etiologies. Evaluation of these identified etiologies and other traditional risk factors cannot explain the high incidence rates of hepatocellular carcinoma in Texas. Texas is home to the second largest petrochemical industry and agricultural industry in the nation; industrial activity and exposure to pathogenic chemicals have never been assessed as potential links to the state's increased incidence rate of hepatocellular carcinoma. METHODS: The association between the county-level concentrations of 4 air pollutants known to be linked to liver cancer, vinyl chloride, arsenic, benzene, and 1,3-butadiene, and hepatocellular carcinoma rates was evaluated using nonparametric generalized additive logistic regression and gamma regression models. Hepatocellular carcinoma incidence rates for 2000-2013 were evaluated in comparison to 1996 and 1999 pollution concentrations and hepatocellular carcinoma rates for the subset of 2006-2013 were evaluated in comparison to 2002 and 2005 pollution concentrations, respectively. RESULTS: The analysis indicates that the relationship between the incidence of liver cancer and air pollution and risk factors is nonlinear. There is a consistent significant positive association between the incidence of liver cancer and hepatitis C prevalence rates (gamma all years, p < 0.05) and vinyl chloride concentrations (logistic 2002 and 2005, p < 0.0001; gamma 2002 and 2005, p < 0.05). CONCLUSIONS: This study suggests that vinyl chloride is a significant contributor to the incidence of liver cancer in Texas. The relationship is notably nonlinear. Further, the study supports the association between incidence of liver cancer and prevalence of hepatitis B.

6.
PLoS One ; 12(10): e0185610, 2017.
Article in English | MEDLINE | ID: mdl-29016628

ABSTRACT

The incidence of hepatocellular carcinoma (HCC), the most common primary liver cancer, is increasing in the US and tripled during the past two decades. The reasons for such phenomenon remain poorly understood. Texas is among continental states with the highest incidence of liver cancer with an annual increment of 5.7%. Established risk factors for HCC include Hepatitis B and C (HBV, HCV) viral infection, alcohol, tobacco and suspected risk factors include obesity and diabetes. While distribution of these risk factors in the state of Texas is similar to the national data and homogeneous, the incidence of HCC in this state is exceptionally higher than the national average and appears to be dishomogeneous in various areas of the state suggesting that other non-recognized risk factors might play a role. No population-based studies are currently available investigating the effect of exposure to Hazardous Air Pollutants (HAPs) as a contributing risk factor for liver cancer. Incidence rate of liver cancer in Texas by counties for the time period between 2002 and 2012 was obtained from the Texas Cancer Registry (TCR). Through Principal Component Analysis (PCA) a subgroup of pollutants, explaining almost all the dataset variability, were identified and used to cluster Texas counties. The analysis generated 4 clusters showing liver cancer rate either higher or lower than national average in association with either high or low levels of HAPs emission in the environment. The study shows that the selected relevant HAPs, 10 among 253 analyzed, produce a significant correlation (P = 0.01-0.05) and some of these have been previously identified as carcinogens. An association between the increased production and consequent exposure to these HAPs and a higher presence of liver cancer in certain counties is suggested. This study provides a new insight on this complex multifactorial disease suggesting that environmental substances might play a role in the etiology of this cancer.


Subject(s)
Air Pollutants/adverse effects , Carcinoma, Hepatocellular/epidemiology , Environmental Exposure/adverse effects , Liver Neoplasms/epidemiology , Organic Chemicals/adverse effects , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/pathology , Environmental Monitoring , Humans , Incidence , Liver Neoplasms/diagnosis , Liver Neoplasms/etiology , Liver Neoplasms/pathology , Principal Component Analysis , Risk Factors , Texas/epidemiology
7.
Oncol Rep ; 37(3): 1291-1300, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28098909

ABSTRACT

Glypican-3 (GPC-3), a transmembrane heparan sulfate proteoglycan (HSPG), has recently been investigated as a player in tissue-dependent cellular signaling, specifically as a regulator of growth. Noteworthy, the regulatory protein has been implicated in both stimulatory and inhibitory pathways involving cell growth. Initially, GPC-3 was thought to act as a cell cycle regulator, as a loss-of-function mutation in the gene caused a hyper-proliferative state known as Simpson-Golabi-Behmel (SGB) overgrowth syndrome. Additionally, certain cancer types have displayed a downregulation of GPC-3 expression. More recently, the protein has been evaluated as a useful marker for hepatocellular carcinoma (HCC) due to its increased expression in the liver during times of growth. In contrast, the GPC-3 marker is not detectable in normal adult liver. Immunotherapy that targets GPC-3 and its affiliated proteins is under investigation as these new biomarkers may hold potential for the detection and treatment of HCC and other diseases in which GPC-3 may be overexpressed. Studies have reported that an overexpression of GPC-3 in HCC predicts a poorer prognosis. This prognostic value further pushes the question regarding GPC-3's role in the regulation and progression of HCC. This review will summarize the current knowledge regarding the clinical aspects of GPC-3, while also synthesizing the current literature with the aim to better understand this molecule's biological interactions at a molecular level, not only in the liver, but in the rest of the body as well. Due to the existing gap in the literature surrounding GPC-3, we believe further investigation of function, structure and domains, cellular localization, and other subfields is warranted to evaluate the protein as a whole, as well as its part in the study of HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic/pathology , Glypicans/metabolism , Hepatocytes/pathology , Liver Neoplasms/pathology , Adult , Carcinoma, Hepatocellular/metabolism , Cell Transformation, Neoplastic/metabolism , Hepatocytes/metabolism , Humans , Liver Neoplasms/metabolism
8.
Transplantation ; 100(10): 2146-52, 2016 10.
Article in English | MEDLINE | ID: mdl-27490419

ABSTRACT

BACKGROUND: We have previously shown that patients listed for orthotopic liver transplantation (OLT) in United Network for Organ Sharing Region 4 (Texas and Oklahoma) have higher waitlist mortality rates when residing more than 30 miles from specialized liver transplant centers (LTC). Considering that findings might only be exclusive for this region with its peculiarities in terms of having the highest land surface extensions, lowest population densities, and largest rural populations. We investigated the entire OLT patient population in the United States to assess if our previous regional findings are nationally validated and if a rural, micropolitan, or metropolitan residence location affects outcome of waitlisted OLT patients in the nation. METHODS: Patients waiting for OLT in the United States from 2002 to 2012 were stratified by distance from the patients' residence to LTC and by Rural Urban Commuting Area (RUCA) codes classification. Statistical analyses were performed to evaluate risk of mortality on the waitlist and the likelihood to receive an OLT using a Cox proportional hazards model and a generalized additive model with a logistic link. RESULTS: Survival time and probability of death while on the waitlist for OLT using distance to LTC showed significant increased risk with the distance (P = 0.001 and P < 0.0001, respectively). At the same time, using RUCA classification as the variable did not show significance (P = 0.14 and P = 0.73, respectively). CONCLUSIONS: Distance from an LTC is a risk factor of mortality on the waitlist for OLT, whereas RUCA classification is not a significant factor.


Subject(s)
End Stage Liver Disease/mortality , Health Services Accessibility , Liver Transplantation/mortality , Travel , Waiting Lists , Adult , Aged , End Stage Liver Disease/surgery , Female , Humans , Male , Middle Aged , Proportional Hazards Models , Risk , United States/epidemiology
9.
PLoS One ; 11(4): e0153613, 2016.
Article in English | MEDLINE | ID: mdl-27074018

ABSTRACT

Isolation of hepatocytes from cirrhotic human livers and subsequent primary culture are important new tools for laboratory research and cell-based therapeutics in the study of hepatocellular carcinoma (HCC). Using such techniques, we have previously identified different subpopulations of human hepatocytes and among them one is showing a progressive transformation of hepatocytes in HCC-like cells. We have hypothesized that increasing the distance from the neoplastic lesion might affect hepatocyte function and transformation capacity. However, limited information is available in comparing the growth and proliferation of human hepatocytes obtained from different areas of the same cirrhotic liver in relation to their distance from the HCC lesion. In this study, hepatocytes from 10 patients with cirrhosis and HCC undergoing surgical resections from specimens obtained at a proximal (CP) and distal (CD) distance from the HCC lesion were isolated and placed in primary culture. CP hepatocytes (CP-Hep) were isolated between 1 to 3 cm (leaving at least 1cm margin to avoid cancer cells and/or satellite lesions), while CD hepatocytes (CD-Hep) were isolated from more than 5 cm or from the contralateral-lobe. A statistical model was built to analyze the proliferation rates of these cells and we evaluated expression of HCC markers (Glypican-3 (GPC3), αSmooth Muscle Actin (α-SMA) and PCNA). We observed a significant difference in proliferation and in-vitro growth showing that CP-Hep had a proliferation pattern and rate significantly different than CD-Hep. Based on these data, this model can provide information to predict growth of human hepatocytes in primary culture in relation to their pre-cancerous state with significant differences in the HCC markers expression. This model provides an important innovative tool for in-vitro analysis of HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Proliferation , Hepatocytes/pathology , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Aged , Female , Humans , Male , Middle Aged , Tumor Cells, Cultured
10.
World J Transplant ; 6(1): 1-9, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27011901

ABSTRACT

Inadequate absorptive surface area poses a great challenge to the patients suffering a variety of intestinal diseases causing short bowel syndrome. To date, these patients are managed with total parenteral nutrition or intestinal transplantation. However, these carry significant morbidity and mortality. Currently, by emergence of tissue engineering, anticipations to utilize an alternative method to increase the intestinal absorptive surface area are increasing. In this paper, we will review the improvements made over time in attempting elongating the intestine with surgical techniques as well as using intestinal bioengineering. Performing sequential intestinal lengthening was the preliminary method applied in humans. However, these methods did not reach widespread use and has limited outcome. Subsequent experimental methods were developed utilizing scaffolds to regenerate intestinal tissue and organoids unit from the intestinal epithelium. Stem cells also have been studied and applied in all types of tissue engineering. Biomaterials were utilized as a structural support for naive cells to produce bio-engineered tissue that can achieve a near-normal anatomical structure. A promising novel approach is the elongation of the intestine with an acellular biologic scaffold to generate a neo-formed intestinal tissue that showed, for the first time, evidence of absorption in vivo. In the large intestine, studies are more focused on regeneration and engineering of sphincters and will be briefly reviewed. From the review of the existing literature, it can be concluded that significant progress has been achieved in these experimental methods but that these now need to be fully translated into a pre-clinical and clinical experimentation to become a future viable therapeutic option.

11.
Int J Oncol ; 48(3): 1205-17, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26717856

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Currently, there is limited knowledge of neoplastic transformation of hepatocytes in HCC. In clinical practice, the high rate of HCC local recurrence suggests the presence of different hepatocyte populations within the liver and particularly in the tumor proximity. The present study investigated primary human hepatocyte cultures obtained from liver specimens of patients affected by cirrhosis and HCC, their proliferation and transformation. Liver samples were obtained from seven HCC cirrhotic patients and from three patients with normal liver (NL). Immediately after surgery, cell outgrowth and primary cultures were obtained from the HCC lesion, the cirrhotic tissue proximal (CP, 1-3 cm) and distal (CD, >5 cm) to the margin of the neoplastic lesion, or from NL. Cells were kept in culture for 16 weeks. Morphologic analyses were performed and proliferation rate of the different cell populations compared over time. Glypican-3, Heppar1, Arginase1 and CD-44 positivity were tested. The degree of invasiveness of cells acquiring neoplastic characteristics was studied with a transwell migration assay. We observed that HCC cells maintained their morphology and unmodified neoplastic characteristics when cultured. Cells isolated from CP, showed a progressive morphologic transformation in HCC-like cells accompanied by modification of markers expression with signs of invasiveness. Absence of HCC contamination in the CP isolates was confirmed. In CD samples some of these characteristics were present and at significantly lower levels. With the present study, we are the first to have identified and describe the existence of human hepatocytes near the cancerous lesion that can transform in HCC in vitro.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cell Transformation, Neoplastic , Hepatocytes/cytology , Liver Neoplasms/metabolism , Aged , Antigens, Neoplasm/metabolism , Arginase/metabolism , Cell Movement , Cell Proliferation , Female , Flow Cytometry , Glypicans/metabolism , Humans , Hyaluronan Receptors/metabolism , Immunohistochemistry , Liver Cirrhosis/physiopathology , Male , Middle Aged , Neoplasm Invasiveness
12.
J Gastrointest Surg ; 20(1): 34-42; discussion 42, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26464017

ABSTRACT

A promising therapeutic approach for intestinal failure consists in elongating the intestine with a bio-engineered segment of neo-formed autologous intestine. Using an acellular biologic scaffold (ABS), we, and others, have previously developed an autologous bio-artificial intestinal segment (BIS) that is morphologically similar to normal bowel in rodents. This neo-formed BIS is constructed with the intervention of naïve stem cells that repopulate the scaffold in vivo, and over a period of time, are transformed in different cell populations typical of normal intestinal mucosa. However, no studies are available to demonstrate that such BIS possesses functional absorptive characteristics necessary to render this strategy a possible therapeutic application. The aim of this study was to demonstrate that the BIS generated has functional absorptive capacity. Twenty male August × Copenhagen-Irish (ACI) rats were used for the study. Two-centimeter sections of ABS were transplanted in the anti-mesenteric border of the small bowel. Animals were studied at 4, 8, and 12 weeks post-engraftment. Segments of intestine with preserved vascular supply and containing the BIS were isolated and compared to intestinal segments of same length in sham control animals (n = 10). D-Xylose solution was introduced in the lumen of the intestinal segments and after 2 h, urine and blood were collected to evaluate D-Xylose levels. Quantitative analysis was performed using ELISA. Morphologic, ultrastructural, and indirect functional absorption analyses were also performed. We observed neo-formed intestinal tissue with near-normal mucosa post-implantation as expected from our previously developed model. Functional characteristics such as morphologically normal enterocytes (and other cell types) with presence of brush borders and preserved microvilli by electron microscopy, preserved water, and ion transporters/channels (by aquaporin and cystic fibrosis transmembrane conductance regulator (CFTR)) were also observed. The capacity of BIS containing neo-formed mucosa to increase absorption of d-Xylose in the blood compared to normal intestine was also confirmed. With this study, we demonstrated for the first time that BIS obtained from ABS has functional characteristics of absorption confirming its potential for therapeutic interventions.


Subject(s)
Bioartificial Organs , Intestinal Absorption , Intestine, Small/physiology , Tissue Engineering/methods , Tissue Scaffolds , Animals , Intestinal Mucosa/anatomy & histology , Intestinal Mucosa/physiology , Intestinal Mucosa/surgery , Intestine, Small/anatomy & histology , Intestine, Small/surgery , Male , Rats
13.
Mol Cell Biochem ; 410(1-2): 293-300, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26346163

ABSTRACT

Oridonin, isolated from Rabdosia rubescens, has been proven to possess various anti-neoplastic and anti-inflammatory properties. Previously, we reported the anti-fibrogenic effects of oridonin for liver in vitro. In the present study, we investigated the effects of a newly designed analog CYD0692 in vitro. Cell viability was measured by Alamar Blue assay. Cell apoptosis was assessed by Cell Death ELISA and Yo-Pro-1 staining. Western blots were performed for cellular proteins. Flow cytometry was used to measure cell cycle regulation. CYD0692 significantly inhibited LX-2 cells proliferation in a dose- and time-dependent manner with an IC50 value of ~0.7 µM for 48 h, ~tenfold greater potency than oridonin. Similar results were observed in HSC-T6 cells. In contrast, on the human hepatocyte cell line C3A, only 12 % of the cell growth was inhibited with 5 µM of CYD0692 treatment for 48 h, while 30 % inhibited at 10 µM. After CYD0692 treatment on LX-2 cells, apoptosis and S-phase cell cycle arrest were induced; cleaved-PARP, p21, and p53 were activated while cyclin-B1 levels declined. In addition, α-smooth muscle actin, type I Collagen, and fibronectin (FN) were markedly down regulated. Transforming growth factor ß1 (TGF ß1) has been identified as a dominant stimulator for ECM production in HSC. Our results indicated that pretreatment with CYD0692 blocked TGF ß1-induced FN expression, thereby decreasing the downstream factors of TGF ß1 signaling, such as Phospho-Smad2/3 and phospho-ERK. In comparison with oridonin, its novel derivative CYD0692 has demonstrated to be a more potent and potentially safer anti-fibrogenic agent for the treatment of hepatic fibrosis.


Subject(s)
Diterpenes, Kaurane/pharmacology , Hepatic Stellate Cells/drug effects , Liver Cirrhosis/prevention & control , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , Inhibitory Concentration 50 , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Rats , S Phase Cell Cycle Checkpoints/drug effects , Time Factors
14.
J Alzheimers Dis ; 47(2): 329-33, 2015.
Article in English | MEDLINE | ID: mdl-26401556

ABSTRACT

Experimental evidence suggests that the protein phosphatase calcineurin mediates the action of amyloid-ß (Aß) oligomers, the most toxic amyloid species thought to drive initial cognitive decline in Alzheimer's disease (AD). However, there is currently no evidence that inhibition of calcineurin could prevent the onset of AD in humans. Here, we report for the first time that individuals chronically treated with calcineurin inhibitors to prevent solid organ transplant rejection have a significantly lower incidence of AD/dementia as compared to the general population. This result prompts further clinical development of calcineurin inhibition as a viable treatment for AD.


Subject(s)
Calcineurin Inhibitors/therapeutic use , Dementia/epidemiology , Graft Rejection/drug therapy , Organ Transplantation/methods , Aged , Aged, 80 and over , Female , Graft Rejection/epidemiology , Humans , Incidence , Male , Middle Aged , Retrospective Studies
15.
J Surg Res ; 199(2): 441-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26409288

ABSTRACT

BACKGROUND: Activated hepatic stellate cells (HSCs) are responsible for excess extracellular matrix (ECM) protein deposition in liver fibrosis. Previously, our group reported that the natural compound oridonin induces apoptosis, inhibits cell proliferation, and downregulates ECM proteins in activated HSC. In this study, the antifibrogenic effects of oridonin derivative CYD0682 on the activated human LX-2 and rat HSC-T6 stellate cell lines were investigated. METHODS: Cell proliferation was measured by alamarBlue assay. Apoptosis was detected by Cell Death ELISA and staining of Yo-Pro-1 and propidium iodide. Cell cycle was determined by flow cytometry. Immunoblot and immunofluorescence staining were performed for cellular protein expression. RESULTS: CYD0682 treatment significantly inhibited LX-2 cell proliferation in a dose- and time-dependent manner with an IC50 value of 0.49 µM for 48 h, ∼10-fold greater potency than oridonin. Similar results were observed in HSC-T6 cells. In contrast, 2.5 µM of CYD0682 treatment had no significant effects on proliferation of the human hepatocyte cell line C3A. CYD0682 treatment induced LX-2 cell apoptosis and S-phase cell cycle arrest and was associated with activation of p53, p21, and cleaved caspase-3. The myofibroblast marker protein α-smooth muscle actin and major ECM proteins type I collagen and fibronectin were markedly suppressed in a time- and dose-dependent fashion by CYD0682. Furthermore, pretreatment with CYD0682 blocked transforming growth factor-ß-induced type I collagen and fibronectin production. CONCLUSIONS: In comparison with oridonin, its novel derivative CYD0682 may act as a more potent antihepatic fibrosis agent.


Subject(s)
Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/therapeutic use , Hepatic Stellate Cells/drug effects , Liver Cirrhosis/drug therapy , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Proliferation/drug effects , Diterpenes, Kaurane/chemistry , Down-Regulation/drug effects , Drug Evaluation, Preclinical , Extracellular Matrix Proteins/metabolism , Hepatic Stellate Cells/metabolism , Humans , Rats , Transforming Growth Factor beta/metabolism
16.
Am J Physiol Gastrointest Liver Physiol ; 309(7): G554-65, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26229008

ABSTRACT

Chronic pancreatitis (CP) is a devastating disease with no treatments. Experimental models have been developed to reproduce the parenchyma and inflammatory responses typical of human CP. For the present study, one objective was to assess and compare the effects of pancreatic duct ligation (PDL) to those of repetitive cerulein (Cer)-induced CP in mice on pancreatic production of bone morphogenetic protein-2 (BMP2), apelin, and parathyroid hormone-related protein (PTHrP). A second objective was to determine the extent of cross talk among pancreatic BMP2, apelin, and PTHrP signaling systems. We focused on BMP2, apelin, and PTHrP since these factors regulate the inflammation-fibrosis cascade during pancreatitis. Findings showed that PDL- and Cer-induced CP resulted in significant elevations in expression and peptide/protein levels of pancreatic BMP2, apelin, and PTHrP. In vivo mouse and in vitro pancreatic cell culture experiments demonstrated that BMP2 stimulated pancreatic apelin expression whereas apelin expression was inhibited by PTHrP exposure. Apelin or BMP2 exposure inhibited PTHrP expression, and PTHrP stimulated upregulation of gremlin, an endogenous inhibitor of BMP2 activity. Transforming growth factor-ß (TGF-ß) stimulated PTHrP expression. Together, findings demonstrated that PDL- and Cer-induced CP resulted in increased production of the pancreatic BMP2, apelin, and PTHrP signaling systems and that significant cross talk occurred among pancreatic BMP2, apelin, and PTHrP. These results together with previous findings imply that these factors interact via a pancreatic network to regulate the inflammation-fibrosis cascade during CP. More importantly, this network communicated with TGF-ß, a key effector of pancreatic pathophysiology. This novel network may be amenable to pharmacologic manipulations during CP in humans.


Subject(s)
Adipokines/metabolism , Bone Morphogenetic Protein 2/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Pancreatic Ducts/surgery , Pancreatitis, Chronic/metabolism , Parathyroid Hormone-Related Protein/metabolism , Animals , Apelin , Blotting, Western , Cell Culture Techniques , Ceruletide/pharmacology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Humans , Ligation , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Signal Transduction
17.
J Mol Med (Berl) ; 93(10): 1085-1093, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26141517

ABSTRACT

UNLABELLED: The current study aims to identify the pro-fibrogenic role of Gremlin, an endogenous antagonist of bone morphogenetic proteins (BMPs) in chronic pancreatitis (CP). CP is a highly debilitating disease characterized by progressive pancreatic inflammation and fibrosis that ultimately leads to exocrine and endocrine dysfunction. While transforming growth factor (TGF)-ß is a known key pro-fibrogenic factor in CP, the TGF-ß superfamily member BMPs exert an anti-fibrogenic function in CP as reported by our group recently. To investigate how BMP signaling is regulated in CP by BMP antagonists, the mouse CP model induced by cerulein was used. During CP induction, TGF-ß1 messenger RNA (mRNA) increased 156-fold in 2 weeks, a BMP antagonist Gremlin 1 (Grem1) mRNA levels increased 145-fold at 3 weeks, and increases in Grem1 protein levels correlated with increases in collagen deposition. Increased Grem1 was also observed in human CP pancreata compared to normal. Grem1 knockout in Grem1 (+/-) mice revealed a 33.2 % reduction in pancreatic fibrosis in CP compared to wild-type littermates. In vitro in isolated pancreatic stellate cells, TGF-ß induced Grem1 expression. Addition of the recombinant mouse Grem1 protein blocked BMP2-induced Smad1/5 phosphorylation and abolished BMP2's suppression effects on TGF-ß-induced collagen expression. Evidences presented herein demonstrate that Grem1, induced by TGF-ß, is pro-fibrogenic by antagonizing BMP activity in CP. KEY MESSAGES: • Gremlin is upregulated in human chronic pancreatitis and a mouse CP model in vivo. • Deficiency of Grem1 in mice attenuates pancreatic fibrosis under CP induction in vivo. • TGF-ß induces Gremlin mRNA and protein expression in pancreatic stellate cells in vitro. • Gremlin blocks BMP2 signaling and function in pancreatic stellate cells in vitro. • This study discloses a pro-fibrogenic role of Gremlin by antagonizing BMP activity in chronic pancreatitis.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Pancreatitis, Chronic/metabolism , Animals , Bone Morphogenetic Protein 2/antagonists & inhibitors , Cells, Cultured , Ceruletide , Collagen/metabolism , Female , Fibrosis , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Mice, Transgenic , Pancreas/metabolism , Pancreas/pathology , Pancreatic Stellate Cells/metabolism , Pancreatitis, Chronic/chemically induced , Pancreatitis, Chronic/pathology , RNA, Messenger/metabolism , Transforming Growth Factor beta1/genetics
18.
Endocrinology ; 156(7): 2451-60, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25965959

ABSTRACT

Protection and replenishment of a functional pancreatic ß-cell mass (BCM) are key goals of all diabetes therapies. Apelin, a small regulatory peptide, is the endogenous ligand for the apelin receptor (APJ) receptor. The apelin-APJ signaling system is expressed in rodent and human islet cells. Apelin exposure has been shown to inhibit and to stimulate insulin secretion. Our aim was to assess the influence of a selective APJ deletion in pancreatic islet cells on islet homeostasis and glucose tolerance in mice. Cre-LoxP strategy was utilized to mediate islet APJ deletion. APJ deletion in islet cells (APJ(Δislet)) resulted in a significantly reduced islet size, density and BCM. An ip glucose tolerance test showed significantly impaired glucose clearance in APJ(Δislet) mice. APJ(Δislet) mice were not insulin resistant and in vivo glucose-stimulated insulin secretion was reduced modestly. In vitro glucose-stimulated insulin secretion showed a significantly reduced insulin secretion by islets from APJ(Δislet) mice. Glucose clearance in response to ip glucose tolerance test in obese APJ(Δislet) mice fed a chronic high-fat (HF) diet, but not pregnant APJ(Δislet) mice, was impaired significantly. In addition, the obesity-induced adaptive elevations in mean islet size and fractional islet area were reduced significantly in obese APJ(Δislet) mice when compared with wild-type mice. Together, these findings demonstrate a stimulatory role for the islet cell apelin-APJ signaling axis in regulation of pancreatic islet homeostasis and in metabolic induced ß-cell hyperplasia. The results indicate the apelin-APJ system can be exploited for replenishment of BCM.


Subject(s)
Blood Glucose/metabolism , Insulin Resistance/genetics , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Obesity/metabolism , Receptors, G-Protein-Coupled/genetics , Adipokines , Animals , Apelin , Apelin Receptors , Diet, High-Fat , Female , Gene Deletion , Glucose Tolerance Test , Homeostasis , In Vitro Techniques , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Male , Mice , Organ Size , Pregnancy
19.
Ann Surg ; 261(1): 21-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25599324

ABSTRACT

A workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases focused on research gaps and opportunities in total pancreatectomy with islet autotransplantation (TPIAT) for the management of chronic pancreatitis. The session was held on July 23, 2014 and structured into 5 sessions: (1) patient selection, indications, and timing; (2) technical aspects of TPIAT; (3) improving success of islet autotransplantation; (4) improving outcomes after total pancreatectomy; and (5) registry considerations for TPIAT. The current state of knowledge was reviewed; knowledge gaps and research needs were specifically highlighted. Common themes included the need to identify which patients best benefit from and when to intervene with TPIAT, current limitations of the surgical procedure, diabetes remission and the potential for improvement, opportunities to better address pain remission, GI complications in this population, and unique features of children with chronic pancreatitis considered for TPIAT. The need for a multicenter patient registry that specifically addresses the complexities of chronic pancreatitis and total pancreatectomy outcomes and postsurgical diabetes outcomes was repeatedly emphasized.


Subject(s)
Islets of Langerhans Transplantation , Pancreatectomy , Pancreatitis, Chronic/surgery , Biomedical Research , Chronic Pain/etiology , Chronic Pain/surgery , Guidelines as Topic , Humans , Islets of Langerhans Transplantation/adverse effects , Islets of Langerhans Transplantation/methods , Pancreatectomy/adverse effects , Pancreatectomy/methods , Pancreatitis, Chronic/complications , Patient Selection , Registries , Time Factors , Transplantation, Autologous , Transplantation, Homologous , Treatment Outcome , United States , United States Food and Drug Administration
20.
Cell Transplant ; 24(1): 11-23, 2015.
Article in English | MEDLINE | ID: mdl-24143907

ABSTRACT

Better results have been recently reported in clinical pancreatic islet transplantation (ITX) due mostly to improved isolation techniques and immunosuppression; however, some limitations still exist. It is known that following transplantation, 30% to 60% of the islets are lost. In our study, we have investigated 1) the role of size as a factor affecting islet engraftment and 2) potential procedural manipulations to increase the number of smaller functional islets that can be transplanted. C57/BL10 mice were used as donors and recipients in a syngeneic islet transplant model. Isolated islets were divided by size (large, >300 µm; medium 150-300 µm; small, <150 µm). Each size was transplanted in chemically induced diabetic mice as full (600 IEQ), suboptimal (400 IEQ), and marginal mass (200 IEQ). Control animals received all size islets. Engraftment was defined as reversal of diabetes by day 7 posttransplantation. When the superiority of smaller islets was observed, strategies of overdigestion and fragmentation were adopted during islet isolation in the attempt to reduce islet size and improve engraftment. Smaller islets were significantly superior in engraftment compared to medium, large, and control (all sizes) groups. This was more evident when marginal mass data were compared. In all masses, success decreased as islet size increased. Once islets were engrafted, functionality was not affected by size. When larger islets were fragmented, a significant decrease in islet functionality was observed. On the contrary, if pancreata were slightly overdigested, although not as successful as small naive islets, an increase in engraftment was observed when compared to the control group. In conclusion, smaller islets are superior in engraftment following islet transplantation. Fragmentation has a deleterious effect on islet engraftment. Islet isolations can be performed by reducing islet size with slight overdigestion, and it can be safely adopted to improve clinical outcome.


Subject(s)
Diabetes Mellitus, Experimental , Graft Survival , Islets of Langerhans Transplantation , Islets of Langerhans/pathology , Animals , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/surgery , Male , Mice , Organ Size , Transplantation, Isogeneic
SELECTION OF CITATIONS
SEARCH DETAIL