Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39129290

ABSTRACT

INTRODUCTION: Sorafenib (Sor) is the first-line treatment option in clinics for treating advanced unresectable hepatocellular carcinoma (HCC). However, acquired chemoresistance and adverse side effects associated with Sor monotherapy limit its clinical benefits. We have previously reported the exceptional anti-HCC potential of uttroside B (Utt-B), a furostanol saponin isolated in our lab from Solanum nigrum Linn. leaves. The current study has evaluated the supremacy of a combinatorial regimen of Sor and Utt-B over Sor monotherapy. METHODS: MTT assay was used for In vitro cytotoxicity studies. A clonogenic assay was conducted to assess the anti-proliferative effect of the combination. Annexin V/PI staining, confocal microscopy, FACS cell cycle analysis, and Western blotting experiments were performed to validate the pro-apoptotic potential of the combination in HepG2 and Huh7 cell lines. Pharmacological safety evaluation was performed in Swiss albino mice. RESULTS: Our results indicate that Utt-B augments Sor-induced cytotoxicity in HepG2 and Huh7 cells. The combination inhibits the proliferation of liver cancer cells by inducing apoptosis through activation of the caspases 7 and 3, leading to PARP cleavage. Furthermore, the combination does not induce any acute toxicity in vivo, even at a dose five times that of the effective therapeutic dose. CONCLUSION: Our results highlight the potential of Utt-B as an effective chemosensitizer, which can augment the efficacy of Sor against HCC and circumvent Sor-induced toxic side effects. Moreover, this is the first and only report to date on the chemosensitizing potential of Utt-B and the only report that demonstrates the therapeutic efficacy and pharmacological safety of a novel combinatorial regimen involving Utt-B and Sor for combating HCC.

2.
iScience ; 26(6): 106816, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37235052

ABSTRACT

Non-melanoma skin cancer (NMSC) is the most frequently diagnosed cancer worldwide. Among the various types of NMSCs, cutaneous squamous cell carcinoma (cSCC) exhibits more aggressive phenotype and is also the second-most prevalent type. Receptor tyrosine kinases (RTK) triggers key signaling events that play critical roles in the development of various cancers including cSCC. Unsurprisingly, for this reason, this family of proteins has become the cynosure of anti-cancer drug discovery pipelines and is also being considered as attractive targets against cSCC. Though inhibition of RTKs in cSCC has yielded favourable results, there is still scope for bettering the therapeutic outcome. In this review, we discuss the relevance of RTK signaling in the progression of cutaneous squamous cell carcinoma, and observations from clinical trials that used RTK inhibitors against cSCC. Backed by results from preclinical studies, including those from our lab, we also give insights into the scope of using some natural products as effective suppressors of RTK signaling and skin carcinogenesis.

4.
Pharmaceuticals (Basel) ; 15(5)2022 May 22.
Article in English | MEDLINE | ID: mdl-35631464

ABSTRACT

We previously reported the remarkable potency of uttroside B (Utt-B), saponin-isolated and characterized in our lab from Solanum nigrum Linn, against HCC. Recently, the U.S. FDA approved Utt-B as an 'orphan drug' against HCC. The current study validates the superior anti-HCC efficacy of Utt-B over sorafenib, the first-line treatment option against HCC. The therapeutic efficacies of Utt-B vs. sorafenib against HCC were compared in vitro, using various liver cancer cell lines and in vivo, utilizing NOD.CB17-Prkdcscid/J mice bearing human HCC xenografts. Our data indicate that Utt-B holds an augmented anti-HCC efficacy over sorafenib. Our previous report demonstrated the pharmacological safety of Utt-B in Chang Liver, the normal immortalized hepatocytes, and in the acute and chronic toxicity murine models even at elevated Utt-B concentrations. Here, we show that higher concentrations of sorafenib induce severe toxicity, in Chang Liver, as well as in acute and chronic in vivo models, indicating that, apart from the superior therapeutic benefit over sorafenib, Utt-B is a pharmacologically safer molecule, and the drug-induced undesirable effects can, thus, be substantially alleviated in the context of HCC chemotherapy. Clinical studies in HCC patients utilizing Utt-B, is a contiguous key step to promote this drug to the clinic.

5.
Front Oncol ; 12: 812598, 2022.
Article in English | MEDLINE | ID: mdl-35211405

ABSTRACT

Our previous study has demonstrated that Uttroside B (Utt-B), a saponin isolated from the leaves of Solanum nigrum Linn induces apoptosis in hepatic cancer cells and exhibits a remarkable growth inhibition of Hepatocellular Carcinoma (HCC). Our innovation has been granted a patent from the US (US 2019/0160088A1), Canada (3,026,426.), Japan (JP2019520425) and South Korea (KR1020190008323) and the technology have been transferred commercially to Q Biomed, a leading US-based Biotech company. Recently, the compound received approval as 'Orphan Drug' against HCC from US FDA, which reveals the clinical relevance of evaluating its antitumor efficacy against HCC. In the present study, we report that Utt-B promotes pro-survival autophagy in hepatic cancer cells as evidenced by the increased expression of autophagy-related proteins, including LC3-II, Beclin1, ATG 5, and ATG 7, as well as a rise in the autophagic flux. Hence, we investigated whether Utt-B-induced autophagic response is complementing or contradicting its apoptotic program in HCC. Inhibition of autophagy using the pharmacological inhibitors, Bafilomycin A1(Baf A1), and 3-methyl adenine (3-MA), and the biological inhibitor, Beclin1 siRNA, significantly enhances the apoptosis of hepatic cancer cells and hence the cytotoxicity induced by Utt-B. We also found increased expression of autophagy markers in Utt-B-treated xenografts derived from HCC. We further analyzed whether the antimalarial drug, Chloroquine (Cqn), a well-known autophagy inhibitor, can enhance the anticancer effect of Utt-B against HCC. We found that inhibition of autophagy using Cqn significantly enhances the antitumor efficacy of Utt-B in vitro and in vivo, in NOD SCID mice bearing HCC xenografts. Taken together, our results suggest that the antitumor effect of Utt-B against HCC can be further enhanced by blocking autophagy. Furthermore, Utt-B in combination with Cqn, a clinically approved drug, if repurposed and used in a combinatorial regimen with Utt-B, can further improve the therapeutic efficacy of Utt-B against HCC.

6.
Front Pharmacol ; 12: 809308, 2021.
Article in English | MEDLINE | ID: mdl-35095521

ABSTRACT

Cancer chemoprevention approaches are aimed at preventing, delaying, or suppressing tumor incidence using synthetic or natural bioactive agents. Mechanistically, chemopreventive agents also aid in mitigating cancer development, either by impeding DNA damage or by blocking the division of premalignant cells with DNA damage. Several pre-clinical studies have substantiated the benefits of using various dietary components as chemopreventives in cancer therapy. The incessant rise in the number of cancer cases globally is an issue of major concern. The excessive toxicity and chemoresistance associated with conventional chemotherapies decrease the success rates of the existent chemotherapeutic regimen, which warrants the need for an efficient and safer alternative therapeutic approach. In this scenario, chemopreventive agents have been proven to be successful in protecting the high-risk populations from cancer, which further validates chemoprevention strategy as rational and promising. Clinical studies have shown the effectiveness of this approach in managing cancers of different origins. Phytochemicals, which constitute an appreciable proportion of currently used chemotherapeutic drugs, have been tested for their chemopreventive efficacy. This review primarily aims to highlight the efficacy of phytochemicals, currently being investigated globally as chemopreventives. The clinical relevance of chemoprevention, with special emphasis on the phytochemicals, curcumin, resveratrol, tryptanthrin, kaempferol, gingerol, emodin, quercetin genistein and epigallocatechingallate, which are potential candidates due to their ability to regulate multiple survival pathways without inducing toxicity, forms the crux of this review. The majority of these phytochemicals are polyphenols and flavanoids. We have analyzed how the key molecular targets of these chemopreventives potentially counteract the key drivers of chemoresistance, causing minimum toxicity to the body. An overview of the underlying mechanism of action of these phytochemicals in regulating the key players of cancer progression and tumor suppression is discussed in this review. A summary of the clinical trials on the important phytochemicals that emerge as chemopreventives is also incorporated. We elaborate on the pre-clinical and clinical observations, pharmacokinetics, mechanism of action, and molecular targets of some of these natural products. To summarize, the scope of this review comprises of the current status, limitations, and future directions of cancer chemoprevention, emphasizing the potency of phytochemicals as effective chemopreventives.

SELECTION OF CITATIONS
SEARCH DETAIL