Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Adv Mater ; 36(36): e2403783, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39023001

ABSTRACT

In 2D noble metals like copper, the carrier scattering at grain boundaries has obscured the intrinsic nature of electronic transport. However, it is demonstrated that the intrinsic nature of transport by hole carriers in 2D copper can be revealed by growing thin films without grain boundaries. As even a slight deviation from the twin boundary is perceived as grain boundaries by electrons, it is only through the thorough elimination of grain boundaries that the hidden hole-like attribute of 2D single-crystal copper can be unmasked. Two types of Fermi surfaces, a large hexagonal Fermi surface centered at the zone center and the triangular Fermi surface around the zone corner, tightly matching to the calculated Fermi surface topology, confirmed by angle-resolved photoemission spectroscopy (ARPES) measurements and vivid nonlinear Hall effects of the 2D single-crystal copper account for the presence of hole carriers experimentally. This breakthrough suggests the potential to manipulate the majority carrier polarity in metals by means of grain boundary engineering in a 2D geometry.

2.
PLoS One ; 18(10): e0289736, 2023.
Article in English | MEDLINE | ID: mdl-37874844

ABSTRACT

Global biodiversity hotspots are often remote, tectonically active areas undergoing climatic fluctuations, such as the Himalaya Mountains and neighboring Qinghai-Tibetan Plateau (QTP). They provide biogeographic templates upon which endemic biodiversity can be mapped to infer diversification scenarios. Yet, this process can be somewhat opaque for the Himalaya, given substantial data gaps separating eastern and western regions. To help clarify, we evaluated phylogeographic and phylogenetic hypotheses for a widespread fish (Snowtrout: Cyprininae; Schizothorax) by sequencing 1,140 base pair of mtDNA cytochrome-b (cytb) from Central Himalaya samples (Nepal: N = 53; Bhutan: N = 19), augmented with 68 GenBank sequences (N = 60 Schizothorax/N = 8 outgroups). Genealogical relationships (N = 132) were analyzed via maximum likelihood (ML), Bayesian (BA), and haplotype network clustering, with clade divergence estimated via TimeTree. Snowtrout seemingly originated in Central Asia, dispersed across the QTP, then into Bhutan via southward-flowing tributaries of the east-flowing Yarlung-Tsangpo River (YLTR). Headwaters of five large Asian rivers provided dispersal corridors from Central into eastern/southeastern Asia. South of the Himalaya, the YLTR transitions into the Brahmaputra River, facilitating successive westward colonization of Himalayan drainages first in Bhutan, then Nepal, followed by far-western drainages subsequently captured by the (now) westward-flowing Indus River. Two distinct Bhutanese phylogenetic groups were recovered: Bhutan-1 (with three subclades) seemingly represents southward dispersal from the QTP; Bhutan-2 apparently illustrates northward colonization from the Lower Brahmaputra. The close phylogenetic/phylogeographic relationships between the Indus River (Pakistan) and western tributaries of the Upper Ganges (India/Nepal) potentially implicate an historic, now disjunct connection. Greater species-divergences occurred across rather than within-basins, suggesting vicariance as a driver. The Himalaya is a component of the Earth's largest glacial reservoir (i.e., the "third-pole") separate from the Arctic/Antarctic. Its unique aquatic biodiversity must be defined and conserved through broad, trans-national collaborations. Our study provides an initial baseline for this process.


Subject(s)
Biodiversity , DNA, Mitochondrial , Animals , Phylogeny , Bhutan , Bayes Theorem , Phylogeography , DNA, Mitochondrial/genetics , Pakistan
3.
bioRxiv ; 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37886446

ABSTRACT

Gene set enrichment analysis (GSEA) is an important step for disease and drug discovery. Genomic, transcriptomics, proteomics and epigenetic analysis of tissue or cells generates gene lists that need to be further investigated in the known biological context. The advent of high-throughput technologies generates the vast number of gene lists that are up or down regulated together. One way of getting meaningful insights of the relationship of these genes is utilizing existing knowledge bases linking them with biological functions or phenotypes. Multiple public databases with annotated gene sets are available for GSEA, and enrichR is the most popular web application still requiring custom tools for large-scale mining. richPathR package is a collection of R functions that helps researchers carry out exploratory analysis and visualization of gene set enrichment using EnrichR.

4.
J Am Chem Soc ; 144(10): 4496-4506, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35238558

ABSTRACT

Electrides, which are ionic crystals composed of excess anionic electrons, are of great interest as an exotic material for fundamental research and practical applications in broad fields of science and technology. However, an inherent chemical instability under ambient conditions at room temperature has been a fatal drawback to be addressed. Here, we report that transition metal-rich monochalcogenides are an emerging class of low-dimensional electrides with excellent chemical and thermal stability in air and water at room temperature through a comprehensive exploration of theoretical prediction and experimental verification. We predict new two-dimensional (2D) electrides crystallized in hexagonal P3̅m1 and P63/mmc structures with strong localization of anionic electrons in a dumbbell shape at the tetrahedral cavity of the interlayer space, which are distinct from the anionic electrons localized at the octahedral cavity in the hexagonal R3̅m structure of the previous 2D [Ca2N]+·e- and [Y2C]2+·2e- electrides. We successfully synthesized the room-temperature stable [Ti2O]2+·2e-, [Ti2S]2+·2e-, [Zr2S]2+·2e-, and primary solid solution [Hf2SxSe1-x]2+·2e- electrides, showing no structural degradation in air and water. Among them, we found that the synthesized [Ti2S]2+·2e- and [Zr2S]2+·2e- electrides are crystallized in orthorhombic symmetry (Pnnm), showing the feature of a one-dimensional (1D) electride with an anionic electron chain, which has never been reported yet. In addition to the successful finding of new 1D and 2D electrides, we discuss the self-passivation effect-driven chemical stability and the role of anionic electrons in determining the physical properties of the newly discovered electrides.

5.
R Soc Open Sci ; 8(10): 210727, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34729207

ABSTRACT

The recurrence of similar evolutionary patterns within different habitats often reflects parallel selective pressures acting upon either standing or independently occurring genetic variation to produce a convergence of phenotypes. This interpretation (i.e. parallel divergences within adjacent streams) has been hypothesized for drainage-specific morphological 'ecotypes' observed in polyploid snowtrout (Cyprinidae: Schizothorax). However, parallel patterns of differential introgression during secondary contact are a viable alternative hypothesis. Here, we used ddRADseq (N = 35 319 de novo and N = 10 884 transcriptome-aligned SNPs), as derived from Nepali/Bhutanese samples (N = 48 each), to test these competing hypotheses. We first employed genome-wide allelic depths to derive appropriate ploidy models, then a Bayesian approach to yield genotypes statistically consistent under the inferred expectations. Elevational 'ecotypes' were consistent in geometric morphometric space, but with phylogenetic relationships at the drainage level, sustaining a hypothesis of independent emergence. However, partitioned analyses of phylogeny and admixture identified subsets of loci under selection that retained genealogical concordance with morphology, suggesting instead that apparent patterns of morphological/phylogenetic discordance are driven by widespread genomic homogenization. Here, admixture occurring in secondary contact effectively 'masks' previous isolation. Our results underscore two salient factors: (i) morphological adaptations are retained despite hybridization and (ii) the degree of admixture varies across tributaries, presumably concomitant with underlying environmental or anthropogenic factors.

SELECTION OF CITATIONS
SEARCH DETAIL