Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Alcohol Clin Exp Res (Hoboken) ; 48(7): 1289-1301, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789401

ABSTRACT

BACKGROUND: Cannabis is increasingly being legalized and socially accepted around the world and is often used with alcohol in social settings. We recently showed that in utero exposure to both substances can alter the density of parvalbumin-expressing interneurons in the hippocampus. Here we investigate the effects of in utero alcohol and cannabis exposure, alone or in combination, on somatostatin- and neuropeptide Y-positive (NPY) interneurons. These are separate classes of interneurons important for network synchrony and inhibition in the hippocampus. METHODS: A 2 (Ethanol, Air) × 2 (tetrahydrocannabinol [THC], Vehicle) design was used to expose pregnant Sprague-Dawley rats to either ethanol or air, in addition to either THC or the inhalant vehicle solution, during gestational days 5-20. Immunohistochemistry for somatostatin- and NPY-positive interneurons was performed in 50 µm tissue sections obtained at postnatal day 70. RESULTS: Exposure to THC in utero had region-specific and sex-specific effects on the density of somatostatin-positive interneurons in the adult rat hippocampus. A female-specific decrease in NPY interneuron cell density was observed in the CA1 region following THC exposure. Combined exposure to alcohol and THC reduced NPY neurons selectively in the ventral dentate gyrus hippocampal subfield. However, overall, co-exposure to alcohol and cannabis had neither additive nor synergistic effects on interneuron populations in other areas of the hippocampus. CONCLUSIONS: These results illustrate how alcohol and cannabis exposure in utero may affect hippocampal function by altering inhibitory processes in a sex-specific manner.

2.
Article in English | MEDLINE | ID: mdl-38552775

ABSTRACT

There is an urgent need for novel antidepressants, given that approximately 30% of those diagnosed with depression do not respond adequately to first-line treatment. Additionally, monoaminergic-based antidepressants have a substantial therapeutic time-lag, often taking months to reach full therapeutic effect. Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist is the only current effective rapid-acting antidepressant, demonstrating efficacy within hours and lasting up to two weeks with an acute dose. Reelin, an extracellular matrix glycoprotein, has demonstrated rapid-acting antidepressant-like effects at 24 h, however the exact timescale of these effects has not been investigated. To determine the short and long-term effects of reelin, female Long Evans rats (n = 120) underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 days). On day 21, rats were treated with reelin (3µg; i.v.), ketamine (10 mg/kg; i.p.), both reelin and ketamine (same doses), or vehicle (saline). Behavioural and biological effects were then evaluated at 1 h, 6 h, 12 h, and 1 week after treatment. The 1-week cohort continued CORT injections to ensure the effect of chronic stress was not lost. Individually, both reelin and ketamine significantly rescued CORT-induced behaviour and hippocampal reelin expression at all timepoints. Ketamine rescued a decrease in dendritic maturity as induced by CORT. Synergistic effects of reelin and ketamine appeared at 1-week, suggesting a potential additive effect of the antidepressant-like actions. Taken together, this study provides further support for reelin-based therapeutics to develop rapid-acting antidepressant.


Subject(s)
Corticosterone , Ketamine , Animals , Female , Rats , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Corticosterone/metabolism , Depression/drug therapy , Depression/chemically induced , Hippocampus/metabolism , Ketamine/pharmacology , Ketamine/therapeutic use , Rats, Long-Evans , Reelin Protein/pharmacology , Reelin Protein/therapeutic use
3.
J Neuroinflammation ; 20(1): 250, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907981

ABSTRACT

Childhood represents a period of significant growth and maturation for the brain, and is also associated with a heightened risk for mild traumatic brain injuries (mTBI). There is also concern that repeated-mTBI (r-mTBI) may have a long-term impact on developmental trajectories. Using an awake closed head injury (ACHI) model, that uses rapid head acceleration to induce a mTBI, we investigated the acute effects of repeated-mTBI (r-mTBI) on neurological function and cellular proliferation in juvenile male and female Long-Evans rats. We found that r-mTBI did not lead to cumulative neurological deficits with the model. R-mTBI animals exhibited an increase in BrdU + (bromodeoxyuridine positive) cells in the dentate gyrus (DG), and that this increase was more robust in male animals. This increase was not sustained, and cell proliferation returning to normal by PID3. A greater increase in BrdU + cells was observed in the dorsal DG in both male and female r-mTBI animals at PID1. Using Ki-67 expression as an endogenous marker of cellular proliferation, a robust proliferative response following r-mTBI was observed in male animals at PID1 that persisted until PID3, and was not constrained to the DG alone. Triple labeling experiments (Iba1+, GFAP+, Brdu+) revealed that a high proportion of these proliferating cells were microglia/macrophages, indicating there was a heightened inflammatory response. Overall, these findings suggest that rapid head acceleration with the ACHI model produces an mTBI, but that the acute neurological deficits do not increase in severity with repeated administration. R-mTBI transiently increases cellular proliferation in the hippocampus, particularly in male animals, and the pattern of cell proliferation suggests that this represents a neuroinflammatory response that is focused around the mid-brain rather than peripheral cortical regions. These results add to growing literature indicating sex differences in proliferative and inflammatory responses between females and males. Targeting proliferation as a therapeutic avenue may help reduce the short term impact of r-mTBI, but there may be sex-specific considerations.


Subject(s)
Brain Concussion , Head Injuries, Closed , Humans , Rats , Female , Male , Animals , Child , Brain Concussion/etiology , Bromodeoxyuridine , Rats, Long-Evans , Head Injuries, Closed/complications , Cell Proliferation , Inflammation/complications
4.
J Vis Exp ; (191)2023 01 20.
Article in English | MEDLINE | ID: mdl-36744774

ABSTRACT

Mild traumatic brain injuries (mTBIs) are a prevalent health issue in North America. There is increasing pressure to utilize ecologically valid models of closed-head mTBI in the preclinical setting to increase translatability to the clinical population. The awake closed-headed injury (ACHI) model uses a modified controlled cortical impactor to deliver closed-headed injury, inducing clinically relevant behavioral deficits without the need for a craniotomy or the use of an anesthetic. This technique does not normally induce fatalities, skull fractures, or brain bleeds, and is more consistent with being a mild injury. Indeed, the mild nature of the ACHI procedure makes it ideal for studies investigating repetitive mTBI (r-mTBI). Growing evidence indicates that r-mTBI can result in a cumulative injury that produces behavioral symptoms, neuropathological changes, and neurodegeneration. r-mTBI is common in youths playing sports, and these injuries occur during a period of robust synaptic reorganization and myelination, making the younger population particularly vulnerable to the long-term influences of r-mTBI. Further, r-mTBI occurs in cases of intimate partner violence, a condition for which there are few objective screening measures. In these experiments, synaptic function was assessed in the hippocampus in juvenile rats that had experienced r-mTBI using the ACHI model. Following the injuries, a tissue slicer was utilized to make hippocampal slices to evaluate bidirectional synaptic plasticity in the hippocampus at either 1 or 7 days following the r-mTBI. Overall, the ACHI model provides researchers with an ecologically valid model to study changes in synaptic plasticity following mTBI and r-mTBI.


Subject(s)
Brain Concussion , Brain Injuries , Rats , Animals , Brain Concussion/pathology , Wakefulness , Brain/pathology , Brain Injuries/pathology , Neuronal Plasticity , Disease Models, Animal
5.
Front Hum Neurosci ; 17: 1307507, 2023.
Article in English | MEDLINE | ID: mdl-38188504

ABSTRACT

Introduction: Traumatic Brain Injury (TBI) accounts for millions of hospitalizations and deaths worldwide. Aerobic exercise is an easily implementable, non-pharmacological intervention to treat TBI, however, there are no clear guidelines for how to best implement aerobic exercise treatment for TBI survivors across age and injury severity. Methods: We conducted a PRISMA-ScR to examine research on exercise interventions following TBI in children, youth and adults, spanning mild to severe TBI. Three electronic databases (PubMed, PsycInfo, and Web of Science) were searched systematically by two authors, using keywords delineated from "Traumatic Brain Injury," "Aerobic Exercise," and "Intervention." Results: Of the 415 papers originally identified from the search terms, 54 papers met the inclusion criteria and were included in this review. The papers were first grouped by participants' injury severity, and subdivided based on age at intervention, and time since injury where appropriate. Discussion: Aerobic exercise is a promising intervention for adolescent and adult TBI survivors, regardless of injury severity. However, research examining the benefits of post-injury aerobic exercise for children and older adults is lacking.

6.
Alcohol Clin Exp Res ; 45(11): 2246-2255, 2021 11.
Article in English | MEDLINE | ID: mdl-34523142

ABSTRACT

BACKGROUND: We recently showed that alcohol and cannabis can interact prenatally, and in a recent review paper, we identified parvalbumin-positive (PV) interneurons in the hippocampus as a potential point of convergence for these teratogens. METHODS: A 2 (Ethanol [EtOH], Air) × 2 (tetrahydrocannabinol [THC], Vehicle) design was used to expose pregnant Sprague-Dawley rats to either EtOH or air, in addition to either THC or the inhalant vehicle solution, during gestational days 5-20. Immunohistochemistry was performed to detect PV interneurons in 1 male and 1 female pup from each litter at postnatal day 70. RESULTS: Significant between-group and subregion-specific effects were found in the dorsal cornu ammonis 1 (CA1) subfield and the ventral dentate gyrus (DG). In the dorsal CA1 subfield, there was an increase in the number of PV interneurons in both the EtOH and EtOH +THC groups, but a decrease with THC alone. There were fewer changes in interneuron numbers overall in the DG, though there was a sex difference, with a decrease in the number of PV interneurons in the THC-exposed group in males. There was also a greater cell layer volume in the DG in the EtOH +THC group than the control group, and in the CA1 region in the EtOH group compared to the control and THC groups. CONCLUSIONS: Prenatal exposure to alcohol and THC differentially affects parvalbumin-positive interneuron numbers in the hippocampus, indicating that both individual and combined exposure can impact the balance of excitation and inhibition in a structure critically involved in learning and memory processes.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Hippocampus/metabolism , Interneurons/metabolism , Parvalbumins/metabolism , Prenatal Exposure Delayed Effects/metabolism , Animals , Cannabis/metabolism , Dentate Gyrus/drug effects , Female , Hippocampus/drug effects , Interneurons/drug effects , Parvalbumins/drug effects , Pregnancy , Rats , Rats, Sprague-Dawley
7.
R Soc Open Sci ; 8(6): 201847, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34109034

ABSTRACT

Healthy ecosystems such as forests and wetlands have a great potential to support adaptation to climate change and are the foundation of sustainable livelihoods. Ecosystem-based adaptation (EbA) can help to protect and maintain healthy ecosystems providing resilience against the impacts of climate change. This paper explores the role of EbA in reconciling socio-economic development with the conservation and restoration of nature in Lake Victoria Basin, Kenya, East Africa. Using selected ecosystems in the Lake region, the paper identifies key EbA approaches and explores trade-offs and synergies at spatial and temporal scales and between different stakeholders. The research methods used for this study include site visits, key informant interviews, focus group discussions, participatory workshops and literature reviews. An analytical framework is applied to advance the understanding of EbA approaches and how they lead to synergies and trade-offs between ecosystem services provision at spatial and temporal scales and multiple stakeholders. Our results show that EbA approaches such as ecosystem restoration have the potential to generate multiple adaptation benefits as well as synergies and trade-offs occurring at different temporal and spatial scales and affecting various stakeholder groups. Our paper underscores the need to identify EbA trade-offs and synergies and to explore the ways in which they are distributed in space and time and between different stakeholders to design better environmental and development programmes.

9.
Brain Connect ; 11(3): 159-179, 2021 04.
Article in English | MEDLINE | ID: mdl-33559520

ABSTRACT

Background: It is becoming increasingly recognized that there is significant interneuron degeneration in Alzheimer's disease. As the hippocampus is integral for learning and memory, we performed a systematic review of primary literature focused on the relationship between Alzheimer's and hippocampal interneurons. In this study, we summarize the experimental work performed to date and identify opportunities for future experiments. Objectives: This PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-style systematic review seeks to summarize the findings of all accessible research focused on cholecystokinin (CCK), neuropeptide Y (NPY), parvalbumin (PV), and somatostatin (SOM) interneurons in the hippocampal formation. Results: One thousand five hundred ninety-three articles were pulled from PubMed, PsycInfo, and Web of Science, based on three blocks of search terms. There were 45 articles that met all the predetermined inclusion/exclusion criteria. There is strong evidence that PV interneurons are affected early in the disease by toxic amyloid beta (Aß) fragments; SOM interneurons are affected indirectly while the SOM neuropeptide may act to slowly worsen toxic Aß fragment accumulation, whereas NPY- and CCK-positive interneurons are affected later in the progression of the disease. Conclusions: Fewer studies have been performed on NPY and CCK interneurons, and there is room for further investigations regarding the role of PV interneurons in Alzheimer's to help resolve contradictory findings. This review found that PV interneurons are affected early in the disease, but only in Alzheimer's precursor protein but not tau models. NPY and CCK interneurons were found to be affected later in the disease, and SOM interneurons vary greatly. Future studies may consider reporting immunohistochemical studies inclusive of either cell location or morphology-as well as marker to give a more robust picture of the disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/metabolism , Brain/metabolism , Hippocampus , Humans , Interneurons/metabolism , Magnetic Resonance Imaging
10.
J Neurotrauma ; 38(2): 169-188, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32883162

ABSTRACT

The practice of heading in soccer has become a public concern because of the potential for subconcussive impacts to cause cumulative concussive-like effects; however, experimental evidence for this hypothesis has been mixed. This systematic review used pre-defined search parameters to assess primary literature that examined changes in cognitive, behavioral, structural, and/or biological processes after acute heading exposure in youth and young adult soccer players. The findings were synthesized into a concise and comprehensive summary of the research following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) format, and suggestions for standardization of acute heading protocols are described. A total of 1189 articles were considered for this review, with 19 articles meeting all of the inclusion criteria for full analysis. An attempt was made to identify methods with significant sensitivity and reliability by grouping studies based on their outcome measures. Because of lack of standardization across intervention types and data collection protocols, no sensitive and reliable methods could be identified conclusively to assess the effects of acute heading exposure in soccer players. Based on this review, there is not enough evidence to either support or refute the potential of effects of subconcussive events from acute soccer heading exposure. Recommendations for standardization of acute heading exposure studies based on the included literature are discussed. Standardization is required to better understand the impact of acute heading exposure in soccer players, while allowing for the development of guidelines that mitigate any potential risks and allowing athletes to remain active and develop their skills.


Subject(s)
Athletic Injuries/psychology , Brain Concussion/psychology , Brain/pathology , Cognition/physiology , Soccer/injuries , Athletic Injuries/pathology , Brain Concussion/pathology , Humans
11.
J Alzheimers Dis ; 78(2): 757-775, 2020.
Article in English | MEDLINE | ID: mdl-33044182

ABSTRACT

BACKGROUND: Mild traumatic brain injury (mTBI) is a putative risk factor for dementia; however, despite having apparent face validity, the evidence supporting this hypothesis remains inconclusive. Understanding the role of mTBI as a risk factor is becoming increasingly important given the high prevalence of mTBI, and the increasing societal burden of dementia. OBJECTIVE: Our objective was to use the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) format to determine if an association exists between mTBI and dementia and related factors, and to quantify the degree of risk. METHODS: In this format, two authors conducted independent database searches of PubMed, PsycInfo, and CINAHL using three search blocks to find relevant papers published between 2000 and 2020. Relevant studies were selected using pre-defined inclusion/exclusion criteria, and bias scoring was performed independently by the two authors before a subset of studies was selected for meta-analysis. Twenty-one studies met the inclusion criteria for this systematic review. RESULTS: The meta-analysis yielded a pooled odds ratio of 1.96 (95% CI 1.698-2.263), meaning individuals were 1.96 times more likely to be diagnosed with dementia if they had a prior mTBI. Most studies examining neuropsychiatric and neuroimaging correlates of dementia found subtle, persistent changes after mTBI. CONCLUSION: These results indicate that mTBI is a risk factor for the development of dementia and causes subtle changes in performance on neuropsychiatric testing and brain structure in some patients.


Subject(s)
Brain Concussion/diagnostic imaging , Brain Concussion/epidemiology , Dementia/diagnostic imaging , Dementia/epidemiology , Neuropsychological Tests , Athletes/psychology , Brain Concussion/psychology , Case-Control Studies , Dementia/psychology , Humans , Risk Factors , Veterans/psychology
12.
Alcohol Clin Exp Res ; 44(6): 1164-1174, 2020 06.
Article in English | MEDLINE | ID: mdl-32246781

ABSTRACT

BACKGROUND: Marijuana and alcohol are both substances that, when used during pregnancy, may have profound effects on the developing fetus. There is evidence to suggest that both drugs have the capacity to affect working memory, one function of the hippocampal formation; however, there is a paucity of data on how perinatal exposure to alcohol or cannabis impacts the process of adult neurogenesis. METHODS: This systematic review examines immunohistochemical data from adult rat and mouse models that assess perinatal alcohol or perinatal marijuana exposure. A comprehensive list of search terms was designed and used to search 3 separate databases. All results were imported to Mendeley and screened by 2 authors. Consensus was reached on a set of final papers that met the inclusion criteria, and their results were summarized. RESULTS: Twelve papers were identified as relevant, 10 of which pertained to the effects of perinatal alcohol on the adult hippocampus, and 2 pertained to the effects of perinatal marijuana on the adult hippocampus. Cellular proliferation in the dentate gyrus was not affected in adult rats and mice exposed to alcohol perinatally. In general, perinatal alcohol exposure did not have a significant and reliable effect on the maturation and survival of adult born granule neurons in the dentate gyrus. In contrast, interneuron numbers appear to be reduced in the dentate gyrus of adult rats and mice exposed perinatally to alcohol. Perinatal marijuana exposure was also found to reduce inhibitory interneuron numbers in the dentate gyrus. CONCLUSIONS: Perinatal alcohol exposure and perinatal marijuana exposure both act on inhibitory interneurons in the hippocampal formation of adult rats. These findings suggest simultaneous perinatal alcohol and marijuana exposure (SAM) may have a dramatic impact on inhibitory processes in the dentate gyrus.


Subject(s)
Alcohol Drinking , Dentate Gyrus/drug effects , Marijuana Use , Neurogenesis/drug effects , Prenatal Exposure Delayed Effects , Animals , Cannabinoid Receptor Agonists/pharmacology , Central Nervous System Depressants/pharmacology , Dronabinol/pharmacology , Ethanol/pharmacology , Female , Mice , Pregnancy , Pregnancy Complications , Rats
13.
Brain Plast ; 6(1): 123-136, 2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33680851

ABSTRACT

BACKGROUND AND OBJECTIVES: We examined how acute ethanol (EtOH) exposure affects long term depression (LTD) in the dentate gyrus (DG) of the hippocampus in juvenile rats. EtOH is thought to directly modulate n-methyl-D-aspartate receptor (NMDAr) currents, which are believed important for LTD induction. LTD in turn is believed to play an important developmental role in the hippocampus by facilitating synaptic pruning. METHODS: Hippocampal slices (350µm) were obtained at post-natal day (PND) 14, 21, or 28. Field EPSPs (excitatory post-synaptic potential) or whole-cell EPSCs (excitatory post-synaptic conductance) were recorded from the DG (dentate gyrus) in response to medial perforant path activation. Low-frequency stimulation (LFS; 900 pulses; 120 s pulse) was used to induce LTD. RESULTS: Whole-cell recordings indicated that EtOH exposure at 50mM did not significantly impact ensemble NMDAr EPSCs in slices obtained from animals in the PND14 or 21 groups, but it reliably produced a modest inhibition in the PND28 group. Increasing the concentration to 100 mM resulted in a modest inhibition of NMDAr EPSCs in all three groups. LTD induction and maintenance was equivalent in magnitude in all three age groups in control conditions, however, and surprisingly, NMDA antagonist AP5 only reliably blocked LTD in the PND21 and 28 age groups. The application of 50 mM EtOH attenuated LTD in all three age groups, however increasing the concentration to 100 mM did not reliably inhibit LTD. CONCLUSIONS: These results indicate that the effect of EtOH on NMDAr-EPSCs recorded from DGCs is both age and concentration dependent in juveniles. Low concentrations of EtOH can attenuate, but did not block LTD in the DG. The effects of EtOH on LTD do not align well with it's effects on NNMDA receptors.

14.
Curr Protoc Neurosci ; 89(1): e80, 2019 09.
Article in English | MEDLINE | ID: mdl-31532919

ABSTRACT

Preclinical models for mild traumatic brain injury (mTBI) need to recapitulate several essential clinical features associated with mTBI, including a lack of significant neuropathology and the onset of neurocognitive symptoms normally associated with mTBI. Here we show how to establish a protocol for reliably and repeatedly inducing a mild awake closed head injury (ACHI) in rats, with no mortality or clinical indications of persistent pain. Moreover, we implement a new rapid neurological assessment protocol (NAP) that can be completely conducted within 1 min of each impact. This ACHI model will help to rectify the paucity of data on how repeated mTBI (r-mTBI) impacts the juvenile brain, an area of significant concern in clinical populations where there is evidence that behavioral sequelae following injury can be more persistent in juveniles. In addition, the ACHI model can help determine if r-mTBI early in life can predispose the brain to exhibiting greater neuropathology (i.e., chronic traumatic encephalopathy) later in life and can facilitate the identification of critical periods of vulnerability to r-mTBI across the lifespan. This article describes the protocol for administering an awake closed head mTBI (i.e., ACHI) to rats, as well as how to perform a rapid NAP following each ACHI. Methods for administering the ACHI to individual subjects repeatedly are described, as are the methods and scoring system for the NAP. The goal of this article is to provide a standardized set of procedures allowing the ACHI and NAP protocols to be used reliably by different laboratories. © 2019 by John Wiley & Sons, Inc.


Subject(s)
Brain Concussion/surgery , Brain/surgery , Neurologic Examination , Wakefulness/physiology , Animals , Disease Models, Animal , Neurologic Examination/instrumentation , Neurologic Examination/methods , Rats , Time Factors
15.
Lancet Gastroenterol Hepatol ; 3(11): 754-767, 2018 11.
Article in English | MEDLINE | ID: mdl-30245064

ABSTRACT

BACKGROUND: There are concerns around poorer response to direct-acting antiviral (DAA) therapy for hepatitis C virus infection among people who use drugs. This systematic review assessed DAA treatment outcomes among people with recent drug use and those receiving opioid substitution therapy. METHODS: Bibliographic databases and conference presentations were searched for observational studies and clinical trials assessing DAA treatment completion, sustained virological response (SVR), and loss to follow-up among people with recent drug use (injecting or non-injecting) and those receiving opioid substitution therapy. Meta-analysis was used to pool estimates and meta-regression to explore heterogeneity. FINDINGS: 38 eligible studies, with 3634 participants, were included. The definition of recent drug use varied across studies, with drug use in the past 6 months and at the initiation of or during DAA therapy most commonly used. Among individuals with recent injecting or non-injecting drug use (21 studies; 1408 participants), treatment completion was 97·5% (95% CI 96·6-98·3) and SVR was 87·7% (95% CI 84·2-91·3). Among individuals receiving opioid substitution therapy (36 studies; 2987 participants), treatment completion was 97·4% (95% CI 96·5-98·3) and SVR was 90·7% (95% CI 88·5-93·0). Among individuals with recent injecting drug use (eight studies; 670 participants), treatment completion was 96·9% (95% CI 95·6-98·2) and SVR was 87·4% (95% CI 82·0-92·8). In meta-regression analysis, clinical trials (vs observational studies; adjusted odd ratio 2·18, 95% CI 1·27-3·75; p=0·006) and higher mean or median age (1·07, 1·02-1·12; p=0·008) were significantly associated with higher SVR. Clinical trials (0·45, 0·22-0·94; p=0·033) and older age (0·94, 0·88-0·99; p=0·034) were also significantly associated with a lower proportion of participants lost to follow-up. INTERPRETATION: Response to DAA therapy was favourable among people with recent drug use (including those who inject) and those receiving opioid substitution therapy, supporting broadening access in these populations. FUNDING: The Kirby Institute, UNSW Sydney, and National Health and Medical Research Council of Australia.


Subject(s)
Antiviral Agents/therapeutic use , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/drug therapy , Opioid-Related Disorders/complications , Substance Abuse, Intravenous/complications , Humans , Opiate Substitution Treatment , Opioid-Related Disorders/drug therapy , Substance Abuse, Intravenous/drug therapy , Sustained Virologic Response
SELECTION OF CITATIONS
SEARCH DETAIL