Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 324
Filter
1.
Int J Biol Macromol ; 281(Pt 1): 136167, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357699

ABSTRACT

Yam is used as common herbal remedy in traditional Chinese medicine and is grown all over Asia. According to previous research, one of the primary bioactive components of yam is yam polysaccharide. To shed light on the mechanism of yam polysaccharide in ulcerative colitis (UC), a yam heteropolysaccharide named CYP-3a was isolated and purified using ultrasonic extraction, the trichloroacetic acid technique, DEAE cellulose-52 and a Sephadex G75 column. CYP-3a comprises rhamnus: arabinose:galactose:mannose:galacturonic acid glucuronic acid, with a molar ratio of 2.25:4.17:3.30:0.09:0.13:0.26. CCK-8 and ELISA analysis results showed that CYP-3a increased the number of dextran sodium sulphate (DSS)-induced Caco-2 cells and could reduce and inhibit their inflammatory response by lowering the amounts of secreted TNF-α and IL-6. Western blot data demonstrated that CYP-3a at various doses could suppress the endoplasmic reticulum stress-mediated apoptotic pathway generated by DSS-induced UC and down-regulate the protein levels of GRP78, CHOP and NF-κB.

2.
PeerJ ; 12: e18253, 2024.
Article in English | MEDLINE | ID: mdl-39403189

ABSTRACT

Background: Talaromyces species play an important role in the nutrient cycle in natural ecosystems, degradation of vegetal biomass in industries and the implications in medicine. However, the species diversity of this genus is still far from fully understood. Methods: The polyphasic taxonomic approach integrating morphological comparisons and molecular phylogenetic analyses based on BenA, CaM, Rpb2 and ITS sequences was used to propose three new Talaromyces species. Results: Three new species of sect. Talaromyces isolated from soil are proposed, namely, T. disparis (ex-type AS3.26221), T. funiformis (ex-type AS3.26220) and T. jianfengicus (ex-type AS3.26253). T. disparis is unique in low growth rate, velvety texture, limited to moderate sporulation, biverticillate, monoverticillate and irregular penicilli bearing a portion of abnormally large globose conidia, it has no close relatives in phylogeny. Being a member of T. pinophilus complex, T. funiformis produces mycelial funicles on Czapek yeast autolysate agar (CYA), 5% malt extract agar (MEA) and yeast extract (YES), sparse sporulation on Czapek agar (Cz), CYA, MEA and YES while abundant on oatmeal agar (OA), bearing appressed biverticillate penicilli and globose to pyriform conida with smooth to finely rough walls. T. jianfengicus belongs to T. verruculosus complex, is characterized by velvety colony texture with moderate to abundant elm-green conidia en masse, producing biverticillate penicilli, globose conidia with verrucose walls. Conclusion: It is now a common practice in establishing new species of Aspergillus, Penicillium and Talaromyces based on morphological characters and phylogenetic analyses of BenA, CaM, Rpb2 and ITS sequences. The proposal of the three novelties of Talaromyces in this article is not only supported by their morphological distinctiveness, but also confirmed by the phylogenetic analyses of the concatenated BenA-CaM-Rpb2 and BenA-CaM-ITS, as well as the individual BenA, CaM, Rpb2 and ITS sequence matrices.


Subject(s)
Phylogeny , Soil Microbiology , Talaromyces , Talaromyces/genetics , Talaromyces/isolation & purification , Talaromyces/classification , China , DNA, Fungal/genetics , Spores, Fungal/genetics
3.
Mol Med ; 30(1): 173, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39390372

ABSTRACT

The aberrant acetylation of mitochondrial proteins is involved in the pathogenesis of multiple diseases including neurodegenerative diseases and cerebral ischemic injury. Previous studies have shown that depletion of mitochondrial NAD+, which is necessary for mitochondrial deacetylase activity, leads to decreased activity of mitochondrial deacetylase and thus causes hyperacetylation of mitochondrial proteins in ischemic brain tissues, which results in altered mitochondrial dynamics. However, it remains largely unknown about how mitochondrial dynamics-related protein Drp1 is acetylated in ischemic neuronal cells and brain tissues. Here, we showed that Drp1 and GCN5L1 expression was up-regulated in OGD-treated neuronal cells and ischemic brain tissues induced by dMCAO, accompanied by the increased mitochondrial fission, mtROS accumulation, and cell apoptosis. Further, we confirmed that ischemia/hypoxia promoted Drp1 interaction with GCN5L1 in neuronal cells and brain tissues. GCN5L1 knockdown attenuated, while its overexpression enhanced Drp1 acetylation and mitochondrial fission, indicating that GCN5L1 plays a crucial role in ischemia/hypoxia-induced mitochondrial fission by acetylating Drp1. Mechanistically, ischemia/hypoxia induced Drp1 phosphorylation by CDK5 upregulation-mediated activation of AMPK in neuronal cells, which in turn facilitated the interaction of GCN5L1 with Drp1, thus enhancing Drp1 acetylation and mitochondrial fission. Accordingly, inhibition of AMPK alleviated ischemia/hypoxia- induced Drp1 acetylation and mitochondrial fission and protected brain tissues from ischemic damage. These findings provide a novel insight into the functional roles of GCN5L1 in regulating Drp1 acetylation and identify a previously unrecognized CDK5-AMPK-GCN5L1 pathway that mediates the acetylation of Drp1 in ischemic brain tissues.


Subject(s)
AMP-Activated Protein Kinases , Brain Ischemia , Cyclin-Dependent Kinase 5 , Dynamins , Mitochondrial Dynamics , Dynamins/metabolism , Dynamins/genetics , Animals , Acetylation , Brain Ischemia/metabolism , Brain Ischemia/genetics , Brain Ischemia/pathology , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/genetics , AMP-Activated Protein Kinases/metabolism , Mice , Male , Neurons/metabolism , Signal Transduction , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Disease Models, Animal , Nerve Tissue Proteins
4.
Chem Sci ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39391378

ABSTRACT

Smart optical materials with tunable fluorescence and room temperature phosphorescence (RTP) exhibit promising application prospects in the field of intelligent switches, information security, etc. Herein, a tetraimidazole derivative was grafted to one-dimensional lanthanum-diphosphonate through H-bonds, generating a coordination polymer (CP), (H4-TIBP)·[La2Li(H2-HEDP)4(H-HEDP)]·3H2O (termed La; TIBP = 3,3,5,5-tetra(imidazole-1-yl)-1,1-biphenyl; H4-HEDP = 1-hydroxyethylidene-1,1-diphosphonic acid) with a three-dimensional supramolecular structure. La shows dynamic fluorescence from blue to red and switchable monotonous yellowish-green RTP, which can be manipulated by reversible photochromism. It is worth noting that Eu3+/Tb3+-doped CPs exhibit time-resolved (red to yellow) and monotonous green afterglow, respectively, which can be attributed to multiple emissions with different decay rates. The dynamic and multicolor luminescence endows these CPs with potential for application in the domains of optical communications, multi-step encryption, and anti-counterfeiting. This work not only integrates color-adjustable fluorescence, switchable RTP, and photochromism in one material, but also realizes the manipulation of the resultant optical performances via photochromism, paving the pathway for the design and synthesis of smart optical materials.

5.
Bioresour Technol ; : 131547, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39343176

ABSTRACT

This study explores the physicochemical attributes of dissolved organic matter from rice straw biochar (BDOM) at varying pyrolysis temperatures and photo-irradiation conditions, focusing on the binding mechanisms of phenanthrene (PHE) and 9-phenanthrol (PTR) using multiple spectroscopic techniques and fluorescence quenching. Following 20 h of photo-irradiation, only 11.3 % of BDOM underwent mineralization, forming new CH3/CH2/CH aliphatics structures. BDOM from biochar produced by pyrolysis at 400°C exhibited a stronger binding affinity with PHE and PTR, achieving 44 % and 52 % maximum binding, respectively. Static and dynamic quenching governed PHE and PTR binding, which was influenced by temperature. Photo-irradiated BDOM showed enhanced binding with PHE, attributed to increased aliphatic content. Hydrogen bond and π-π electron-donor-acceptor (EDA) interactions dominated PTR binding, while π-π interactions and hydrophobic interactions controlled PHE. This study provides valuable insights into BDOM photochemical behaviors and their impact on the environmental fate of polycyclic aromatic hydrocarbons (PAHs) after BDOM photo-irradiation.

6.
Sci Total Environ ; 953: 176130, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39260508

ABSTRACT

Plastics aging reduces resistance to microbial degradation. Plastivore Tenebrio molitor rapidly biodegrades polystyrene (PS, size: < 80 µm), but the effects of aging on PS biodegradation by T. molitor remain uncharacterized. This study examined PS biodegradation over 24 days following three pre-treatments: freezing with UV exposure (PS1), UV exposure (PS2), and freezing (PS3), compared to pristine PS (PSv) microplastic. The pretreatments deteriorated PS polymers, resulting in slightly higher specific PS consumption (602.8, 586.1, 566.7, and 563.9 mg PS·100 larvae-1·d-1, respectively) and mass reduction rates (49.6 %, 49.5 %, 49.2 %, and 48.7 %, respectively) in PS1, PS2, and PS3 compared to PSv. Improved biodegradation correlated with reduced molecular weights and the formation of oxidized functional groups. Larvae fed more aged PS exhibited greater gut microbial diversity, with microbial community and metabolic pathways shaped by PS aging, as supported by co-occurrence network analysis. These findings indicated that the aging treatments enhanced PS biodegradation by only limited extent but impacted greater on gut microbiome and bacterial metabolic genes, indicating that the T. molitor host have highly predominant capability to digest PS plastics and alters gut microbiome to adapt the PS polymers fed to them.


Subject(s)
Biodegradation, Environmental , Gastrointestinal Microbiome , Larva , Polystyrenes , Tenebrio , Animals , Tenebrio/metabolism , Gastrointestinal Microbiome/physiology , Larva/metabolism , Bacteria/metabolism , Plastics/metabolism , Water Pollutants, Chemical/metabolism
7.
Materials (Basel) ; 17(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39336335

ABSTRACT

In this study, vinyltriethoxysilane (TEVS) was introduced onto the surface of carbon fiber using liquid-phase oxidation and impregnation methods to incorporate vinyl groups onto the carbon fiber, thereby enhancing the chemical bonding between the carbon fiber and norbornene-polyimide (PI-NA). Through a systematic study of the hydrolysis conditions and concentration of the TEVS solution, the optimal modification conditions were determined. These conditions were used to graft TEVS onto the surface of oxidized carbon fiber to prepare carbon-fiber-reinforced PI-NA composites (CF/PI-NA). The results show that when carbon fiber was treated with a 0.4 wt% TEVS solution, the interlaminar shear strength (ILSS) of the composites reached 65.12 MPa, and the interfacial shear strength (IFSS) reached 88.58 MPa, representing increases of 27.58% and 35.62%, respectively, compared to the CF/PI-NA composite materials prepared from untreated carbon fiber. It is worth noting that the modification method described in the study is simple and easy to implement, and it has the potential for large-scale continuous production applications.

8.
World J Gastrointest Surg ; 16(8): 2620-2629, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39220082

ABSTRACT

BACKGROUND: Acute non-variceal upper gastrointestinal bleeding (ANVUGIB) represents a significant clinical challenge due to its unpredictability and potentially severe outcomes. The Rockall risk score has emerged as a critical tool for prognostic assessment in patients with ANVUGIB, aiding in the prediction of rebleeding and mortality. However, its applicability and accuracy in the Chinese population remain understudied. AIM: To assess the prognostic value of the Rockall risk score in a Chinese cohort of patients with ANVUGIB. METHODS: A retrospective analysis of 168 ANVUGIB patients' medical records was conducted. The study employed statistical tests, including the t-test, χ 2 test, spearman correlation, and receiver operating characteristic (ROC) analysis, to assess the relationship between the Rockall score and clinical outcomes, specifically focusing on rebleeding events within 3 months post-assessment. RESULTS: Significant associations were found between the Rockall score and various clinical outcomes. High Rockall scores were significantly associated with rebleeding events (r = 0.735, R 2 = 0.541, P < 0.001) and strongly positively correlated with adverse outcomes. Low hemoglobin levels (t = 2.843, P = 0.005), high international normalized ratio (t = 3.710, P < 0.001), active bleeding during endoscopy (χ 2 = 7.950, P = 0.005), large ulcer size (t = 6.348, P < 0.001), and requiring blood transfusion (χ 2 = 6.381, P = 0.012) were all significantly associated with rebleeding events. Furthermore, differences in treatment and management strategies were identified between patients with and without rebleeding events. ROC analysis indicated the excellent discriminative power (sensitivity: 0.914; specificity: 0.816; area under the curve: 0.933; Youden index: 0.730) of the Rockall score in predicting rebleeding events within 3 months. CONCLUSION: This study provides valuable insights into the prognostic value of the Rockall risk score for ANVUGIB in the Chinese population. The results underscore the potential of the Rockall score as an effective tool for risk stratification and prognostication, with implications for guiding risk-appropriate management strategies and optimizing care for patients with ANVUGIB.

9.
Article in English | MEDLINE | ID: mdl-39293144

ABSTRACT

Red swamp crayfish (Procambarus clarkii) is an important freshwater aquaculture species in China. In the process of crayfish aquaculture, high temperature stress is common, which seriously affects its yield and quality. It is urgently recommended to improve these traits in the breed. However, the application of high-temperature tolerance genes in molecular breeding of crayfish has not been reported. In this study, transcriptome analysis was used to explore the high-temperature tolerance genes of crayfish. The results showed that genes related to energy metabolism, antioxidant, immunity and body restoration were involved in high temperature adaptation of crayfish. Based on the selected high temperature tolerance genes Heat Stress Protein 70 and Heat Stress Protein 90 (HSP70 and HSP90), the genetic variation of their open reading frames was investigated. Totally, three and four SNPs of HSP70 and HSP90, were obtained respectively. In addition, three high-temperature stress experiments were conducted on crayfish to identify favoured haplotypes. HSP70-1 and HSP90-1 are the favoured haplotypes of HSP70 and HSP90, respectively. Furthermore, a series of molecular markers were developed to identify the favoured haplotype combinations of HSP70 and HSP90. Finally, we propose a molecular breeding strategy to improve crayfish tolerance to high temperature, thereby providing a potential to increase crayfish yield. Together, this study provides a theoretical basis and molecular markers for the breeding of high-temperature tolerant crayfish.

10.
BMC Genomics ; 25(1): 797, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179980

ABSTRACT

BACKGROUND: R2R3-MYB transcription factors belong to one of the largest gene subfamilies in plants, and they are involved in diverse biological processes. However, the role of R2R3-MYB transcription factor subfamily genes in the response of rice (Oryza sativa L.) to salt stress has been rarely reported. RESULTS: In this study, we performed a genome-wide characterization and expression identification of rice R2R3-MYB transcription factor subfamily genes. We identified a total of 117 R2R3-MYB genes in rice and characterized their gene structure, chromosomal location, and cis-regulatory elements. According to the phylogenetic relationships and amino acid sequence homologies, the R2R3-MYB genes were divided into four groups. qRT-PCR of the R2R3-MYB genes showed that the expression levels of 10 genes significantly increased after 3 days of 0.8% NaCl treatment. We selected a high expression gene OsMYB2-115 for further analysis. OsMYB2-115 was highly expressed in the roots, stem, leaf, and leaf sheath. OsMYB2-115 was found to be localized in the nucleus, and the yeast hybrid assay showed that OsMYB2-115 has transcriptional activation activity. CONCLUSION: This result provides important information for the functional analyses of rice R2R3-MYB transcription factor subfamily genes related to the salt stress response and reveals that OsMYB2-115 may be an important gene associated with salt tolerance in rice.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Phylogeny , Plant Proteins , Salt Stress , Transcription Factors , Oryza/genetics , Oryza/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Salt Stress/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Multigene Family , Gene Expression Profiling , Chromosomes, Plant/genetics
11.
Chemistry ; : e202402581, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143837

ABSTRACT

Metal-organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single-ligand-guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs. In this work, the coordination assembly of bipyridinedicarboxylate (2,2'-bipyridine-4,4'-dicarboxylic acid, H2bpdc; 1,10-phenanthroline-2,9-dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]·2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)-connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus.

12.
Sci Bull (Beijing) ; 69(17): 2698-2704, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39122617

ABSTRACT

We reconstruct the cosmological background evolution under the scenario of dynamical dark energy through the Gaussian process approach, using the latest Dark Energy Spectroscopic Instrument (DESI) baryon acoustic oscillations (BAO) combined with other observations. Our results reveal that the reconstructed dark-energy equation-of-state (EoS) parameter w(z) exhibits the so-called quintom-B behavior, crossing -1 from phantom to quintessence regime as the universe expands. We investigate under what situation this type of evolution could be achieved from the perspectives of field theories and modified gravity. In particular, we reconstruct the corresponding actions for f(R),f(T), and f(Q) gravity, respectively. We explicitly show that, certain modified gravity can exhibit the quintom dynamics and fit the recent DESI data efficiently, and for all cases the quadratic deviation from the ΛCDM scenario is mildly favored.

13.
Article in English | MEDLINE | ID: mdl-39074010

ABSTRACT

The Self-Attention Mechanism (SAM) excels at distilling important information from the interior of data to improve the computational efficiency of models. Nevertheless, many Quantum Machine Learning (QML) models lack the ability to distinguish the intrinsic connections of information like SAM, which limits their effectiveness on massive high-dimensional quantum data. To tackle the above issue, a Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM. Further, a Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques to release half of quantum resources by mid-circuit measurement, thereby bolstering both feasibility and adaptability. Simultaneously, the Quantum Kernel Self-Attention Score (QKSAS) with an exponentially large characterization space is spawned to accommodate more information and determine the measurement conditions. Eventually, four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST, where the QKSAS tests and correlation assessments between noise immunity and learning ability are executed on the best-performing sub-model. The paramount experimental finding is that the QKSAN subclasses possess the potential learning advantage of acquiring impressive accuracies exceeding 98.05% with far fewer parameters than classical machine learning models. Predictably, QKSAN lays the foundation for future quantum computers to perform machine learning on massive amounts of data while driving advances in areas such as quantum computer vision.

14.
Eur J Pharmacol ; 979: 176820, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39032765

ABSTRACT

Ferroptosis, an iron-dependent lipid peroxidation-driven cell death pathway, has been linked to the development of Alzheimer's disease (AD). However, the role of ferroptosis in the pathogenesis of AD remains unclear. Cerebroprotein hydrolysate-I (CH-I) is a mixture of peptides with neurotrophic effects that improves cognitive deficits and reduces amyloid burden. The present study investigated the ferroptosis-induced signalling pathways and the neuroprotective effects of CH-I in the brains of AD transgenic mice. Seven-month-old male APPswe/PS1dE9 (APP/PS1) transgenic mice were treated with intraperitoneal injections of CH-I and saline for 28 days. The Morris water maze test was used to assess cognitive function. CH-I significantly improved cognitive deficits and attenuated beta-amyloid (Aß) aggregation and tau phosphorylation in the hippocampus of APP/PS1 mice. RNA sequencing revealed that multiple genes and pathways, including ferroptosis-related pathways, were involved in the neuroprotective effects of CH-I. The increased levels of lipid peroxidation, ferrous ions, reactive oxygen species (ROS), and altered expression of ferroptosis-related genes (recombinant solute carrier family 7, member 11 (SLC7A11), spermidine/spermine N1-acetyltransferase 1 (SAT1) and glutathione peroxidase 4 (GPX4)) were significantly alleviated after CH-I treatment. Quantitative real-time PCR and western blotting were performed to investigate the expression of key ferroptosis-related genes and the p53/SAT1/arachidonic acid 15-lipoxygenase (ALOX15) signalling pathway. The p53/SAT1/ALOX15 signalling pathway was found to be involved in mediating ferroptosis, and the activation of this pathway was significantly suppressed in AD by CH-I. CH-I demonstrated neuroprotective effects against AD by attenuating ferroptosis and the p53/SAT1/ALOX15 signalling pathway, thus providing new targets for AD treatment.


Subject(s)
Alzheimer Disease , Arachidonate 15-Lipoxygenase , Cognitive Dysfunction , Ferroptosis , Mice, Transgenic , Signal Transduction , Tumor Suppressor Protein p53 , Animals , Ferroptosis/drug effects , Tumor Suppressor Protein p53/metabolism , Signal Transduction/drug effects , Male , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Acetyltransferases/metabolism , Acetyltransferases/genetics , Disease Models, Animal , Presenilin-1/genetics , Hippocampus/drug effects , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism
15.
Environ Res ; 261: 119647, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39032618

ABSTRACT

A Co3Mn-LDHs and carbon nanotube (Co3Mn-LDHs/CNT) composite catalyst was constructed for permonosulfate (PMS) activation and degrading sulfamethoxazole (SMX) under Vis light irradiation. The introduction of CNTs into Co3Mn-LDHs facilitate the exciton dissociation and carrier migration, and the e- and h+ were readily separated from Co3Mn-LDHs/CNT in the photocatalysis process, which promoted the production rate of reactive oxygen species (ROS), so the Co3Mn-LDHs + Vis + PMS system exhibited better activity with an SMX degradation ratio of 61.25% than those of Co3Mn-LDHs + Vis system (42.30%) and Co3Mn-LDHs + PMS system (48.30%). After 10 cycles, the degradation rate of SMX only decreased by 7.16%, indicating the good reusability of the Co3Mn-LDHs/CNTs catalyst. The results of electron paramagnetic resonance (EPR) analysis and radical quenching experiments demonstrated that that the SO4•- played crucial role for SMX removal in Co3Mn-LDHs/CNTs + Vis + PMS system, and both e- and h+ made an important contribution to activating PMS to produce ROS. Overall, this work provided an excellent catalyst for photo-assisted PMS activation and suggested the activation mechanism for organic pollutant remediation.


Subject(s)
Nanotubes, Carbon , Sulfamethoxazole , Sulfamethoxazole/chemistry , Nanotubes, Carbon/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Hydroxides/chemistry , Sulfates/chemistry
16.
Environ Sci Technol ; 58(25): 11027-11040, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38857061

ABSTRACT

Conversion from natural lands to cropland, primarily driven by agricultural expansion, could significantly alter soil microbiome worldwide; however, influences of forest-to-cropland conversion on microbial hierarchical interactions and ecosystem multifunctionality have not been fully understood. Here, we examined the effects of forest-to-cropland conversion on intratrophic and cross-trophic microbial interactions and soil ecosystem multifunctionality and further disclosed their underlying drivers at a national scale, using Illumina sequencing combined with high-throughput quantitative PCR techniques. The forest-to-cropland conversion significantly changed the structure of soil microbiome (including prokaryotic, fungal, and protistan communities) while it did not affect its alpha diversity. Both intrakingdom and interkingdom microbial networks revealed that the intratrophic and cross-trophic microbial interaction patterns generally tended to be more modular to resist environmental disturbance introduced from forest-to-cropland conversion, but this was insufficient for the cross-trophic interactions to maintain stability; hence, the protistan predation behaviors were still disturbed under such conversion. Moreover, key soil microbial clusters were declined during the forest-to-cropland conversion mainly because of the increased soil total phosphorus level, and this drove a great degradation of the ecosystem multifunctionality (by 207%) in cropland soils. Overall, these findings comprehensively implied the negative effects of forest-to-cropland conversion on the agroecosystem, from microbial hierarchical interactions to ecosystem multifunctionality.


Subject(s)
Ecosystem , Forests , Soil Microbiology , Microbiota , Agriculture , Soil , Crops, Agricultural
17.
Acta Pharmacol Sin ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890526

ABSTRACT

Cardiomyocytes are terminal differentiated cells and have limited ability to proliferate or regenerate. Condition like myocardial infarction causes massive death of cardiomyocytes and is the leading cause of death. Previous studies have demonstrated that cardiac fibroblasts can be induced to transdifferentiate into cardiomyocytes in vitro and in vivo by forced expression of cardiac transcription factors and microRNAs. Our previous study have demonstrated that full chemical cocktails could also induce fibroblast to cardiomyocyte transdifferentiation both in vitro and in vivo. With the development of tissue clearing techniques, it is possible to visualize the reprogramming at the whole-organ level. In this study, we investigated the effect of the chemical cocktail CRFVPTM in inducing in situ fibroblast to cardiomyocyte transdifferentiation with two strains of genetic tracing mice, and the reprogramming was observed at whole-heart level with CUBIC tissue clearing technique and 3D imaging. In addition, single-cell RNA sequencing (scRNA-seq) confirmed the generation of cardiomyocytes from cardiac fibroblasts which carries the tracing marker. Our study confirms the use of small molecule cocktails in inducing in situ fibroblast to cardiomyocyte reprogramming at the whole-heart level and proof-of-conceptly providing a new source of naturally incorporated cardiomyocytes to help heart regeneration.

18.
Food Chem ; 457: 140101, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38901349

ABSTRACT

Curdlan, a natural polysaccharide, exhibits emulsion-stabilizing and viscosity-modifying properties. However, when employed solely in the aqueous phase, curdlan's adhesive nature impedes droplet dispersion, resulting in a gel-like structure with limited applicability. This investigation formulated a biphasic stabilized oil-in-water emulsion by supplementing the oil phase with beeswax and the aqueous phase with curdlan and soy protein isolate (SPI). The addition of SPI transformed the structural characteristics from a gel-like to a mayonnaise-like structure. Maximal electrostatic repulsion was observed at an internal phase volume fraction of 30%, effectively precluding droplet aggregation owing to the absolute zeta potentials surpassing 40 mV. The emulsions displayed shear-thinning rheological behavior, with a higher storage modulus than the loss modulus, indicative of favorable elastic properties. Molecular docking revealed the predominant role of polar amino acids in facilitating hydrogen bond formation. This study provides a template for developing emulsions with biphasic stability and desirable dispersibility.


Subject(s)
Emulsions , Rheology , Soybean Proteins , Water , beta-Glucans , Emulsions/chemistry , beta-Glucans/chemistry , Soybean Proteins/chemistry , Water/chemistry , Viscosity , Molecular Docking Simulation , Particle Size , Oils/chemistry , Hydrogen Bonding
19.
Acta Pharmacol Sin ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871922

ABSTRACT

Oligodendrocytes (OLs) are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). Demyelination is a common feature of many neurological diseases such as multiple sclerosis (MS) and leukodystrophies. Although spontaneous remyelination can happen after myelin injury, nevertheless, it is often insufficient and may lead to aggravated neurodegeneration and neurological disabilities. Our previous study has discovered that MEK/ERK pathway negatively regulates OPC-to-OL differentiation and remyelination in mouse models. To facilitate possible clinical evaluation, here we investigate several MEK inhibitors which have been approved by FDA for cancer therapies in both mouse and human OPC-to-OL differentiation systems. Trametinib, the first FDA approved MEK inhibitor, displays the best effect in stimulating OL generation in vitro among the four MEK inhibitors examined. Trametinib also significantly enhances remyelination in both MOG-induced EAE model and LPC-induced focal demyelination model. More exciting, trametinib facilitates the generation of MBP+ OLs from human embryonic stem cells (ESCs)-derived OPCs. Mechanism study indicates that trametinib promotes OL generation by reducing E2F1 nuclear translocation and subsequent transcriptional activity. In summary, our studies indicate a similar inhibitory role of MEK/ERK in human and mouse OL generation. Targeting the MEK/ERK pathway might help to develop new therapies or repurpose existing drugs for demyelinating diseases.

20.
RSC Adv ; 14(23): 16150-16169, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38769957

ABSTRACT

The recent widespread use of microplastics (MPs), especially in pharmaceuticals and personal care products (PPCPs), has caused significant water pollution. This study presents a UV/electrically co-facilitated activated persulfate (PS) system to co-degrade a typical microplastic polyvinyl chloride (PVC) and an organic sunscreen p-aminobenzoic acid (PABA). We investigated the effect of various reaction conditions on the degradation. PVC and PABA degradation was 37% and 99.22%, respectively. Furthermore, we observed alterations in the surface topography and chemical characteristics of PVC throughout degradation. The possible degradation pathways of PVC and PABA were proposed by analyzing the intermediate products and the free radicals generated. This study reveals the co-promoting effect of multiple mechanisms in the activation by ultraviolet light and electricity.

SELECTION OF CITATIONS
SEARCH DETAIL