Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Rep ; 14(1): 18054, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103361

ABSTRACT

In this pilot study, we investigated the utility of handheld ultrasound-guided photoacoustic (US-PA) imaging probe for analyzing ex-vivo breast specimens obtained from female patients who underwent breast-conserving surgery (BCS). We aimed to assess the potential of US-PA in detecting biochemical markers such as collagen, lipids, and hemoglobin, and compare these findings with routine imaging modalities (mammography, ultrasound) and histopathology results, particularly across various breast densities. Twelve ex-vivo breast specimens were obtained from female patients with a mean age of 59.7 ± 9.5 years who underwent BCS. The tissues were illuminated using handheld US-PA probe between 700 and 1100 nm across all margins and analyzed for collagen, lipids, and hemoglobin distribution. The obtained results were compared with routine imaging and histopathological assessments. Our findings revealed that lipid intensity and distribution decreased with increasing breast density, while collagen exhibited an opposite trend. These observations were consistent with routine imaging and histopathological analyses. Moreover, collagen intensity significantly differed (P < 0.001) between cancerous and normal breast tissue, indicating its potential as an additional biomarker for risk stratification across various breast conditions. The study results suggest that a combined assessment of PA biochemical information, such as collagen and lipid content, superimposed on grey-scale ultrasound findings could aid in distinguishing between normal and malignant breast conditions, as well as assist in BCS margin assessment. This underscores the potential of US-PA imaging as a valuable tool for enhancing breast cancer diagnosis and management, offering complementary information to existing imaging modalities and histopathology.


Subject(s)
Breast Neoplasms , Collagen , Hemoglobins , Lipids , Photoacoustic Techniques , Humans , Female , Photoacoustic Techniques/methods , Middle Aged , Hemoglobins/analysis , Hemoglobins/metabolism , Collagen/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Aged , Lipids/analysis , Lipids/chemistry , Breast/pathology , Breast/diagnostic imaging , Pilot Projects , Ultrasonography, Mammary/methods , Tomography/methods , Biomarkers
2.
Sci Rep ; 14(1): 1085, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212347

ABSTRACT

The genitourinary symptom of menopause (GSM) affects up to 65% of women, resulting in symptoms such as vulvovaginal dryness, discomfort, and dysuria, which significantly impacts quality of life. The current assessment methods rely on subjective questionnaires that can be influenced by individual differences, as well as invasive measurements that are time-consuming and not easily accessible. In this study, we explore the potential of a non-invasive and objective assessment tool called diffuse reflectance spectroscopy and imaging (DRSI) to evaluate tissue chromophores, including water, lipid, oxyhemoglobin, and deoxyhemoglobin. These measurements provide information about moisture content, lipid levels, oxygen saturation, and blood fraction, which can serve as surrogate markers for genital estrogen levels. Our findings reveal distinct differences in these chromophores among pre, peri, and postmenopausal subjects. By using lipid and blood fraction tissue chromophores in a K-Nearest Neighbour classifier model, we achieved a prediction accuracy of 65% compared to vaginal maturation index (VMI) that is clinically used to assess estrogen-related hormonal changes. When age was included as the third feature, the accuracy increased to 78%. We believe that by refining the study protocol and configuring the fiber probe to examine tissue chromophores both in the superficial vulva skin for epidermal water content and the deeper layers, DRSI has the potential to provide objective diagnosis and aid in monitoring the treatment outcome of GSM.


Subject(s)
Menopause , Quality of Life , Female , Humans , Pilot Projects , Vagina/pathology , Spectrum Analysis , Estrogens , Water , Lipids , Atrophy/pathology
SELECTION OF CITATIONS
SEARCH DETAIL