Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
bioRxiv ; 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39386637

ABSTRACT

Background: A key step towards understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organization at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organization of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex. Aims: We aimed to evaluate the impact of sex on the spatial organization of person-specific functional brain networks. Method: We leveraged person-specific atlases of functional brain networks defined using non-negative matrix factorization in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalized additive models to uncover associations between sex and the spatial layout ("topography") of personalized functional networks (PFNs). Next, we trained support vector machines to classify participants' sex from multivariate patterns of PFN topography. Finally, we leveraged transcriptomic data from the Allen Human Brain Atlas to evaluate spatial correlations between sex differences in PFN topography and gene expression. Results: Sex differences in PFN topography were greatest in association networks including the fronto-parietal, ventral attention, and default mode networks. Machine learning models trained on participants' PFNs were able to classify participant sex with high accuracy. Brain regions with the greatest sex differences in PFN topography were enriched in expression of X-linked genes as well as genes expressed in astrocytes and excitatory neurons. Conclusions: Sex differences in PFN topography are robust, replicate across large-scale samples of youth, and are associated with expression patterns of X-linked genes. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.

2.
Psychopathology ; : 1-16, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004073

ABSTRACT

INTRODUCTION: Repetitive transcranial magnetic stimulation (rTMS) alleviates symptoms of major depressive disorder, but its neurobiological mechanisms remain to be fully understood. Growing evidence from proton magnetic resonance spectroscopy (1HMRS) studies suggests that rTMS alters excitatory and inhibitory neurometabolites. This preliminary meta-analysis aims to quantify current trends in the literature and identify future directions for the field. METHODS: Ten eligible studies that quantified Glutamate (Glu), Glu+Glutamine (Glx), or GABA before and after an rTMS intervention in depressed samples were sourced from PubMed, MEDLINE, PsychInfo, Google Scholar, and primary literature following PRISMA guidelines. Data were pooled using a random-effects model, Cohen's d effect sizes were calculated, and moderators, such as neurometabolite and 1HMRS sequence, were assessed. It was hypothesized that rTMS would increase cortical neurometabolites. RESULTS: Within-subjects data from 224 cases encompassing 31 neurometabolite effects (k) were analyzed. Active rTMS in clinical responders (n = 128; k = 22) nominally increased glutamatergic neurometabolites (d = 0.15 [95% CI: -0.01, 0.30], p = 0.06). No change was found in clinical nonresponders (p = 0.8) or sham rTMS participants (p = 0.4). A significant increase was identified in Glx (p = 0.01), but not Glu (p = 0.6). Importantly, effect size across conditions were associated with the number of rTMS pulses patients received (p = 0.05), suggesting dose dependence. CONCLUSIONS: Clinical rTMS is associated with a nominal, dose-dependent increase in glutamatergic neurometabolites, suggesting rTMS may induce Glu-dependent neuroplasticity and upregulate neurometabolism. More, larger scale studies adhering to established acquisition and reporting standards are needed to further elucidate the neurometabolic mechanisms of rTMS.

3.
Hum Brain Mapp ; 45(8): e26714, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38878300

ABSTRACT

Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about spatial properties of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genetics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose network enrichment significance testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study enrichment of associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.


Subject(s)
Brain , Phenotype , Humans , Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Cohort Studies , Female , Male
4.
J Neurodev Disord ; 16(1): 35, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918700

ABSTRACT

BACKGROUND: Minor physical anomalies (MPAs) are congenital morphological abnormalities linked to disruptions of fetal development. MPAs are common in 22q11.2 deletion syndrome (22q11DS) and psychosis spectrum disorders (PS) and likely represent a disruption of early embryologic development that may help identify overlapping mechanisms linked to psychosis in these disorders. METHODS: Here, 2D digital photographs were collected from 22q11DS (n = 150), PS (n = 55), and typically developing (TD; n = 93) individuals. Photographs were analyzed using two computer-vision techniques: (1) DeepGestalt algorithm (Face2Gene (F2G)) technology to identify the presence of genetically mediated facial disorders, and (2) Emotrics-a semi-automated machine learning technique that localizes and measures facial features. RESULTS: F2G reliably identified patients with 22q11DS; faces of PS patients were matched to several genetic conditions including FragileX and 22q11DS. PCA-derived factor loadings of all F2G scores indicated unique and overlapping facial patterns that were related to both 22q11DS and PS. Regional facial measurements of the eyes and nose were smaller in 22q11DS as compared to TD, while PS showed intermediate measurements. CONCLUSIONS: The extent to which craniofacial dysmorphology 22q11DS and PS overlapping and evident before the impairment or distress of sub-psychotic symptoms may allow us to identify at-risk youths more reliably and at an earlier stage of development.


Subject(s)
Craniofacial Abnormalities , DiGeorge Syndrome , Psychotic Disorders , Humans , DiGeorge Syndrome/genetics , DiGeorge Syndrome/physiopathology , Psychotic Disorders/genetics , Female , Male , Adolescent , Child , Craniofacial Abnormalities/genetics , Young Adult , Adult , Machine Learning , Image Processing, Computer-Assisted
5.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915591

ABSTRACT

Human cortical development follows a sensorimotor-to-association sequence during childhood and adolescence1-6. The brain's capacity to enact this sequence over decades indicates that it relies on intrinsic mechanisms to regulate inter-regional differences in the timing of cortical maturation, yet regulators of human developmental chronology are not well understood. Given evidence from animal models that thalamic axons modulate windows of cortical plasticity7-12, here we evaluate the overarching hypothesis that structural connections between the thalamus and cortex help to coordinate cortical maturational heterochronicity during youth. We first introduce, cortically annotate, and anatomically validate a new atlas of human thalamocortical connections using diffusion tractography. By applying this atlas to three independent youth datasets (ages 8-23 years; total N = 2,676), we reproducibly demonstrate that thalamocortical connections develop along a maturational gradient that aligns with the cortex's sensorimotor-association axis. Associative cortical regions with thalamic connections that take longest to mature exhibit protracted expression of neurochemical, structural, and functional markers indicative of higher circuit plasticity as well as heightened environmental sensitivity. This work highlights a central role for the thalamus in the orchestration of hierarchically organized and environmentally sensitive windows of cortical developmental malleability.

6.
Hum Brain Mapp ; 45(5): e26580, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520359

ABSTRACT

Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of 26 participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (n = 20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications.


Subject(s)
Diffusion Magnetic Resonance Imaging , White Matter , Humans , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/anatomy & histology , White Matter/diagnostic imaging , White Matter/anatomy & histology , Autopsy , Algorithms
7.
Hum Brain Mapp ; 45(2): e26570, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339908

ABSTRACT

Head motion correction is particularly challenging in diffusion-weighted MRI (dMRI) scans due to the dramatic changes in image contrast at different gradient strengths and directions. Head motion correction is typically performed using a Gaussian Process model implemented in FSL's Eddy. Recently, the 3dSHORE-based SHORELine method was introduced that does not require shell-based acquisitions, but it has not been previously benchmarked. Here we perform a comprehensive evaluation of both methods on realistic simulations of a software fiber phantom that provides known ground-truth head motion. We demonstrate that both methods perform remarkably well, but that performance can be impacted by sampling scheme and the extent of head motion and the denoising strategy applied before head motion correction. Furthermore, we find Eddy benefits from denoising the data first with MP-PCA. In sum, we provide the most extensive known benchmarking of dMRI head motion correction, together with extensive simulation data and a reproducible workflow. PRACTITIONER POINTS: Both Eddy and SHORELine head motion correction methods performed quite well on a large variety of simulated data. Denoising with MP-PCA can improve head motion correction performance when Eddy is used. SHORELine effectively corrects motion in non-shelled diffusion spectrum imaging data.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Humans , Diffusion Magnetic Resonance Imaging/methods , Motion , Computer Simulation , Brain/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods
8.
Transl Psychiatry ; 14(1): 87, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341414

ABSTRACT

Although neuroimaging has been widely applied in psychiatry, much of the exuberance in decades past has been tempered by failed replications and a lack of definitive evidence to support the utility of imaging to inform clinical decisions. There are multiple promising ways forward to demonstrate the relevance of neuroimaging for psychiatry at the individual patient level. Ultra-high field magnetic resonance imaging is developing as a sensitive measure of neurometabolic processes of particular relevance that holds promise as a new way to characterize patient abnormalities as well as variability in response to treatment. Neuroimaging may also be particularly suited to the science of brain stimulation interventions in psychiatry given that imaging can both inform brain targeting as well as measure changes in brain circuit communication as a function of how effectively interventions improve symptoms. We argue that a greater focus on individual patient imaging data will pave the way to stronger relevance to clinical care in psychiatry. We also stress the importance of using imaging in symptom-relevant experimental manipulations and how relevance will be best demonstrated by pairing imaging with differential treatment prediction and outcome measurement. The priorities for using brain imaging to inform psychiatry may be shifting, which compels the field to solidify clinical relevance for individual patients over exploratory associations and biomarkers that ultimately fail to replicate.


Subject(s)
Mental Disorders , Psychiatry , Humans , Mental Disorders/diagnostic imaging , Mental Disorders/therapy , Neuroimaging/methods , Magnetic Resonance Imaging , Psychiatry/methods , Brain
9.
Hum Brain Mapp ; 45(1): e26553, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38224541

ABSTRACT

22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.


Subject(s)
DiGeorge Syndrome , Psychotic Disorders , Female , Humans , Adolescent , Male , DiGeorge Syndrome/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Psychotic Disorders/complications , Gray Matter/diagnostic imaging
10.
Nat Commun ; 14(1): 8411, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110396

ABSTRACT

Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain's functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development℠ Study. Across matched discovery (n = 3525) and replication (n = 3447) samples, the total cortical representation of fronto-parietal PFNs positively correlates with general cognition. Cross-validated ridge regressions trained on PFN topography predict cognition in unseen data across domains, with prediction accuracy increasing along the cortex's sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.


Subject(s)
Individuality , Magnetic Resonance Imaging , Humans , Adolescent , Magnetic Resonance Imaging/methods , Brain , Cognition , Neuropsychological Tests , Brain Mapping
11.
Cell Rep ; 42(12): 113487, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37995188

ABSTRACT

During adolescence, the brain undergoes extensive changes in white matter structure that support cognition. Data-driven approaches applied to cortical surface properties have led the field to understand brain development as a spatially and temporally coordinated mechanism that follows hierarchically organized gradients of change. Although white matter development also appears asynchronous, previous studies have relied largely on anatomical tract-based atlases, precluding a direct assessment of how white matter structure is spatially and temporally coordinated. Harnessing advances in diffusion modeling and machine learning, we identified 14 data-driven patterns of covarying white matter structure in a large sample of youth. Fiber covariance networks aligned with known major tracts, while also capturing distinct patterns of spatial covariance across distributed white matter locations. Most networks showed age-related increases in fiber network properties, which were also related to developmental changes in executive function. This study delineates data-driven patterns of white matter development that support cognition.


Subject(s)
White Matter , Humans , Adolescent , Executive Function , Brain , Cognition
12.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014137

ABSTRACT

Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about the spatial structure of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genomics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose Network Enrichment Significance Testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study phenotype associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.

13.
Neurosci Biobehav Rev ; 154: 105421, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37802267

ABSTRACT

Functional magnetic resonance imaging (fMRI) is increasingly used to non-invasively study the acute impact of psychedelics on the human brain. While fMRI is a promising tool for measuring brain function in response to psychedelics, it also has known methodological challenges. We conducted a systematic review of fMRI studies examining acute responses to experimentally administered psychedelics in order to identify convergent findings and characterize heterogeneity in the literature. We reviewed 91 full-text papers; these studies were notable for substantial heterogeneity in design, task, dosage, drug timing, and statistical approach. Data recycling was common, with 51 unique samples across 91 studies. Fifty-seven studies (54%) did not meet contemporary standards for Type I error correction or control of motion artifact. Psilocybin and LSD were consistently reported to moderate the connectivity architecture of the sensorimotor-association cortical axis. Studies also consistently reported that ketamine administration increased activation in the dorsomedial prefrontal cortex. Moving forward, use of best practices such as pre-registration, standardized image processing and statistical testing, and data sharing will be important in this rapidly developing field.


Subject(s)
Hallucinogens , Ketamine , N-Methyl-3,4-methylenedioxyamphetamine , Humans , Hallucinogens/pharmacology , Ketamine/pharmacology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Psilocybin/pharmacology , Brain/diagnostic imaging
14.
Dev Cogn Neurosci ; 62: 101265, 2023 08.
Article in English | MEDLINE | ID: mdl-37327696

ABSTRACT

Delay discounting is a measure of impulsive choice relevant in adolescence as it predicts many real-life outcomes, including obesity and academic achievement. However, resting-state functional networks underlying individual differences in delay discounting during youth remain incompletely described. Here we investigate the association between multivariate patterns of functional connectivity and individual differences in impulsive choice in a large sample of children, adolescents, and adults. A total of 293 participants (9-23 years) completed a delay discounting task and underwent 3T resting-state fMRI. A connectome-wide analysis using multivariate distance-based matrix regression was used to examine whole-brain relationships between delay discounting and functional connectivity. These analyses revealed that individual differences in delay discounting were associated with patterns of connectivity emanating from the left dorsal prefrontal cortex, a default mode network hub. Greater delay discounting was associated with greater functional connectivity between the dorsal prefrontal cortex and other default mode network regions, but reduced connectivity with regions in the dorsal and ventral attention networks. These results suggest delay discounting in children, adolescents, and adults is associated with individual differences in relationships both within the default mode network and between the default mode and networks involved in attentional and cognitive control.


Subject(s)
Connectome , Delay Discounting , Humans , Adult , Adolescent , Child , Individuality , Brain Mapping/methods , Prefrontal Cortex , Brain , Magnetic Resonance Imaging , Neural Pathways
15.
Am J Clin Nutr ; 118(1): 121-131, 2023 07.
Article in English | MEDLINE | ID: mdl-37146760

ABSTRACT

BACKGROUND: Iron is essential to brain function, and iron deficiency during youth may adversely impact neurodevelopment. Understanding the developmental time course of iron status and its association with neurocognitive functioning is important for identifying windows for intervention. OBJECTIVES: This study aimed to characterize developmental change in iron status and understand its association with cognitive performance and brain structure during adolescence using data from a large pediatric health network. METHODS: This study included a cross-sectional sample of 4899 participants (2178 males; aged 8-22 y at the time of participation, M [SD] = 14.24 [3.7]) who were recruited from the Children's Hospital of Philadelphia network. Prospectively collected research data were enriched with electronic medical record data that included hematological measures related to iron status, including serum hemoglobin, ferritin, and transferrin (33,015 total samples). At the time of participation, cognitive performance was assessed using the Penn Computerized Neurocognitive Battery, and brain white matter integrity was assessed using diffusion-weighted MRI in a subset of individuals. RESULTS: Developmental trajectories were characterized for all metrics and revealed that sex differences emerged after menarche such that females had reduced iron status relative to males [all R2partial > 0.008; all false discovery rates (FDRs) < 0.05]. Higher socioeconomic status was associated with higher hemoglobin concentrations throughout development (R2partial = 0.005; FDR < 0.001), and the association was greatest during adolescence. Higher hemoglobin concentrations were associated with better cognitive performance during adolescence (R2partial = 0.02; FDR < 0.001) and mediated the association between sex and cognition (mediation effect = -0.107; 95% CI: -0.191, -0.02). Higher hemoglobin concentration was also associated with greater brain white matter integrity in the neuroimaging subsample (R2partial = 0.06, FDR = 0.028). CONCLUSIONS: Iron status evolves during youth and is lowest in females and individuals of low socioeconomic status during adolescence. Diminished iron status during adolescence has consequences for neurocognition, suggesting that this critical period of neurodevelopment may be an important window for intervention that has the potential to reduce health disparities in at-risk populations.


Subject(s)
Brain , Iron , Humans , Female , Adolescent , Male , Child , Cross-Sectional Studies , Brain/diagnostic imaging , Cognition , Hemoglobins/analysis , Social Class
16.
Psychol Med ; : 1-10, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36987693

ABSTRACT

BACKGROUND: Neuropsychiatric disorders are common in 22q11.2 Deletion Syndrome (22q11DS) with about 25% of affected individuals developing schizophrenia spectrum disorders by young adulthood. Longitudinal evaluation of psychosis spectrum features and neurocognition can establish developmental trajectories and impact on functional outcome. METHODS: 157 youth with 22q11DS were assessed longitudinally for psychopathology focusing on psychosis spectrum symptoms, neurocognitive performance and global functioning. We contrasted the pattern of positive and negative psychosis spectrum symptoms and neurocognitive performance differentiating those with more prominent Psychosis Spectrum symptoms (PS+) to those without prominent psychosis symptoms (PS-). RESULTS: We identified differences in the trajectories of psychosis symptoms and neurocognitive performance between the groups. The PS+ group showed age associated increase in symptom severity, especially negative symptoms and general nonspecific symptoms. Correspondingly, their level of functioning was worse and deteriorated more steeply than the PS- group. Neurocognitive performance was generally comparable in PS+ and PS- groups and demonstrated a similar age-related trajectory. However, worsening executive functioning distinguished the PS+ group from PS- counterparts. Notably, of the three executive function measures examined, only working memory showed a significant difference between the groups in rate of change. Finally, structural equation modeling showed that neurocognitive decline drove the clinical change. CONCLUSIONS: Youth with 22q11DS and more prominent psychosis features show worsening of symptoms and functional decline driven by neurocognitive decline, most related to executive functions and specifically working memory. The results underscore the importance of working memory in the developmental progression of psychosis.

17.
bioRxiv ; 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36865219

ABSTRACT

Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of twenty-six participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (n=20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications.

18.
Neuroimage ; 271: 120037, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36931330

ABSTRACT

Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for conducting statistical analyses of fixel-wise data exist, currently available tools support only a limited number of statistical models. Here we introduce ModelArray, an R package for mass-univariate statistical analysis of fixel-wise data. At present, ModelArray supports linear models as well as generalized additive models (GAMs), which are particularly useful for studying nonlinear effects in lifespan data. In addition, ModelArray also aims for scalable analysis. With only several lines of code, even large fixel-wise datasets can be analyzed using a standard personal computer. Detailed memory profiling revealed that ModelArray required only limited memory even for large datasets. As an example, we applied ModelArray to fixel-wise data derived from diffusion images acquired as part of the Philadelphia Neurodevelopmental Cohort (n = 938). ModelArray revealed anticipated nonlinear developmental effects in white matter. Moving forward, ModelArray is supported by an open-source software development model that can incorporate additional statistical models and other imaging data types. Taken together, ModelArray provides a flexible and efficient platform for statistical analysis of fixel-wise data.


Subject(s)
White Matter , Humans , Diffusion Magnetic Resonance Imaging/methods , Software , Research Design , Models, Statistical
19.
Nat Neurosci ; 26(4): 638-649, 2023 04.
Article in English | MEDLINE | ID: mdl-36973514

ABSTRACT

Animal studies of neurodevelopment have shown that recordings of intrinsic cortical activity evolve from synchronized and high amplitude to sparse and low amplitude as plasticity declines and the cortex matures. Leveraging resting-state functional MRI (fMRI) data from 1,033 youths (ages 8-23 years), we find that this stereotyped refinement of intrinsic activity occurs during human development and provides evidence for a cortical gradient of neurodevelopmental change. Declines in the amplitude of intrinsic fMRI activity were initiated heterochronously across regions and were coupled to the maturation of intracortical myelin, a developmental plasticity regulator. Spatiotemporal variability in regional developmental trajectories was organized along a hierarchical, sensorimotor-association cortical axis from ages 8 to 18. The sensorimotor-association axis furthermore captured variation in associations between youths' neighborhood environments and intrinsic fMRI activity; associations suggest that the effects of environmental disadvantage on the maturing brain diverge most across this axis during midadolescence. These results uncover a hierarchical neurodevelopmental axis and offer insight into the progression of cortical plasticity in humans.


Subject(s)
Sensorimotor Cortex , Animals , Humans , Adolescent , Child , Young Adult , Adult , Magnetic Resonance Imaging/methods , Brain , Brain Mapping/methods , Myelin Sheath
20.
bioRxiv ; 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36798354

ABSTRACT

The white matter architecture of the human brain undergoes substantial development throughout childhood and adolescence, allowing for more efficient signaling between brain regions that support executive function. Increasingly, the field understands grey matter development as a spatially and temporally coordinated mechanism that follows hierarchically organized gradients of change. While white matter development also appears asynchronous, previous studies have largely relied on anatomical atlases to characterize white matter tracts, precluding a direct assessment of how white matter structure is spatially and temporally coordinated. Here, we leveraged advances in diffusion modeling and unsupervised machine learning to delineate white matter fiber covariance networks comprised of structurally similar areas of white matter in a cross-sectional sample of 939 youth aged 8-22 years. We then evaluated associations between fiber covariance network structural properties with both age and executive function using generalized additive models. The identified fiber covariance networks aligned with the known architecture of white matter while simultaneously capturing novel spatial patterns of coordinated maturation. Fiber covariance networks showed heterochronous increases in fiber density and cross section that generally followed hierarchically organized temporal patterns of cortical development, with the greatest increases in unimodal sensorimotor networks and the most prolonged increases in superior and anterior transmodal networks. Notably, we found that executive function was associated with structural features of limbic and association networks. Taken together, this study delineates data-driven patterns of white matter network development that support cognition and align with major axes of brain maturation.

SELECTION OF CITATIONS
SEARCH DETAIL