Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Neurochem Int ; 41(1): 55-63, 2002 Jul.
Article in English | MEDLINE | ID: mdl-11918972

ABSTRACT

Prion diseases are fatal neurodegenerative disorders of the CNS of men and animals, characterized by spongiform degeneration of the CNS, astrogliosis and deposition of amyloid into the brain. The conversion of a cellular glycoprotein (the prion protein, PrP(C)) into an altered isoform (the prion scrapie, PrP(Sc)), which accumulates within the brain tissue by virtue of its resistance to the intracellular catabolism, is currently believed to represent the etiologic agent responsible for these diseases. Synthetic or recombinant polypeptides are commonly used to elucidate the mechanism of proteins involved in neurodegenerative diseases. Here we describe a procedure, which allows the synthesis and purification in its native folding, of the human prion protein fragment 90-231, corresponding to the protease resistant core of PrP(Sc). We synthesized the polypeptides 90-231 of both the wild type and the E200K mutant isoforms of PrP. Using a gluthatione S-transferase (GST) fusion protein approach, milligram amounts of polypeptides were obtained after expression in E. coli. The recovery of the purified fusion protein was monitored following the evaluation of the GST activity. The PrP fragment was released from the fusion protein immobilized on a glutathione-coupled agarose resin by direct cleavage with thrombin. The recombinant protein was identified by comassie stained acrylamide gel and by immunoblotting employing a monoclonal anti-PrP antibody. The peptide purified by gel filtration chromatography showed mainly an alpha-helix structure, as analysed by circular dichroism (CD) and an intact disulfide bridge. The same procedure was also successfully employed to synthesize and purify the E200K mutant PrP fragment.


Subject(s)
Escherichia coli/genetics , Prions/genetics , Base Sequence , Blotting, Western , Chromatography, Liquid , Circular Dichroism , DNA Primers , Humans , Mass Spectrometry , Prions/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Spectrometry, Fluorescence
2.
J Biol Chem ; 276(34): 32177-83, 2001 Aug 24.
Article in English | MEDLINE | ID: mdl-11423556

ABSTRACT

An N-capping box and a hydrophobic staple motif are strictly conserved in the core of all known glutathione S-transferases (GST). In the present work, mutations of hGSTA1-1 enzyme residues forming these motifs have been generated. The analysis of S154A, D157A, and S154A/D157A capping mutants indicate that the removal of this local signal destabilizes the protein. The fact that the third helical residue D157A mutation (N-3) was much more destabilizing than the first helical residue S154A mutation (N-cap) suggests that the appropriate conformation of the conserved substructure formed by the alpha 6-helix and preceding loop (GST motif II) is crucial for the overall protein stability. The refolding study of GSTA1-1 variants supports the prediction that this subdomain could represent a nucleation site of refolding. The analysis of L153A, I158A, L153G, and L153A/I158A hydrophobic staple mutants indicate that the removal of this motif destabilizes the GSTA1-1 structure as well as its refolding transition state. The hydrophobic staple interaction favors essential inter-domain contacts and, thereby, in contrast to capping interactions, accelerates the enzyme reactivation. Its strict conservation in the GST system supports the suggestion that this local signal could represent an evolutionarily conserved determinant for rapid folding.


Subject(s)
Conserved Sequence , Glutathione Transferase/metabolism , Amino Acid Motifs , Enzyme Activation , Enzyme Stability , Glutathione Transferase/chemistry , Glutathione Transferase/genetics , Humans , Isoenzymes , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL