Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters








Database
Language
Publication year range
1.
PLoS One ; 12(2): e0166875, 2017.
Article in English | MEDLINE | ID: mdl-28199320

ABSTRACT

Ageing is a complex process characterised by a systemic and progressive deterioration of biological functions. As ageing is associated with an increased prevalence of age-related chronic disorders, understanding its underlying molecular mechanisms can pave the way for therapeutic interventions and managing complications. Animal models such as mice are commonly used in ageing research as they have a shorter lifespan in comparison to humans and are also genetically close to humans. To assess the translatability of mouse ageing to human ageing, the urinary proteome in 89 wild-type (C57BL/6) mice aged between 8-96 weeks was investigated using capillary electrophoresis coupled to mass spectrometry (CE-MS). Using age as a continuous variable, 295 peptides significantly correlated with age in mice were identified. To investigate the relevance of using mouse models in human ageing studies, a comparison was performed with a previous correlation analysis using 1227 healthy subjects. In mice and humans, a decrease in urinary excretion of fibrillar collagens and an increase of uromodulin fragments was observed with advanced age. Of the 295 peptides correlating with age, 49 had a strong homology to the respective human age-related peptides. These ortholog peptides including several collagen (N = 44) and uromodulin (N = 5) fragments were used to generate an ageing classifier that was able to discriminate the age among both wild-type mice and healthy subjects. Additionally, the ageing classifier depicted that telomerase knock-out mice were older than their chronological age. Hence, with a focus on ortholog urinary peptides mouse ageing can be translated to human ageing.


Subject(s)
Aging/urine , Models, Biological , Peptides/urine , Proteome/metabolism , Proteomics , Animals , Capillary Electrochromatography , Female , Humans , Male , Mass Spectrometry , Mice , Mice, Knockout
2.
Oncotarget ; 6(33): 34106-17, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26431327

ABSTRACT

To assess normal and pathological peptidomic changes that may lead to an improved understanding of molecular mechanisms underlying ageing, urinarypeptidomes of 1227 healthy and 10333 diseased individuals between 20 and 86 years of age were investigated. The diseases thereby comprised diabetes mellitus, renal and cardiovascular diseases. Using age as a continuous variable, 116 peptides were identified that significantly (p < 0.05; |ρ|≥0.2) correlated with age in the healthy cohort. The same approach was applied to the diseased cohort. Upon comparison of the peptide patterns of the two cohorts 112 common age-correlated peptides were identified. These 112 peptides predominantly originated from collagen, uromodulin and fibrinogen. While most fibrillar and basement membrane collagen fragments showed a decreased age-related excretion, uromodulin, beta-2-microglobulin and fibrinogen fragments showed an increase. Peptide-based in silico protease analysis was performed and 32 proteases, including matrix metalloproteinases and cathepsins, were predicted to be involved in ageing. Identified peptides, predicted proteases and patient information were combined in a systems biology pathway analysis to identify molecular pathways associated with normal and/or pathological ageing. While perturbations in collagen homeostasis, trafficking of toll-like receptors and endosomal pathways were commonly identified, degradation of insulin-like growth factor-binding proteins was uniquely identified in pathological ageing.


Subject(s)
Aging/urine , Cardiovascular Diseases/urine , Diabetes Mellitus/urine , Kidney Diseases/urine , Peptides/urine , Proteome/analysis , Adult , Aged , Aged, 80 and over , Aging/physiology , Collagen/metabolism , Female , Fibrinogen/metabolism , Humans , Male , Middle Aged , Peptides/analysis , Uromodulin/metabolism , Young Adult
3.
J Control Release ; 216: 158-68, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26277064

ABSTRACT

Polymer-based nanoparticles are promising drug delivery systems allowing the development of new drug and treatment strategies with reduced side effects. However, it remains a challenge to screen for new and effective nanoparticle-based systems in vitro. Important factors influencing the behavior of nanoparticles in vivo cannot be simulated in screening assays in vitro, which still represent the main tools in academic research and pharmaceutical industry. These systems have serious drawbacks in the development of nanoparticle-based drug delivery systems, since they do not consider the highly complex processes influencing nanoparticle clearance, distribution, and uptake in vivo. In particular, the transfer of in vitro nanoparticle performance to in vivo models often fails, demonstrating the urgent need for novel in vitro tools that can imitate aspects of the in vivo situation more accurate. Dynamic cell culture, where cells are cultured and incubated in the presence of shear stress has the potential to bridge this gap by mimicking key-features of organs and vessels. Our approach implements and compares a chip-based dynamic cell culture model to the common static cell culture and mouse model to assess its capability to predict the in vivo success more accurately, by using a well-defined poly((methyl methacrylate)-co-(methacrylic acid)) and poly((methyl methacrylate)-co-(2-dimethylamino ethylmethacrylate)) based nanoparticle library. After characterization in static and dynamic in vitro cell culture we were able to show that physiological conditions such as cell-cell communication of co-cultured endothelial cells and macrophages as well as mechanotransductive signaling through shear stress significantly alter cellular nanoparticle uptake. In addition, it could be demonstrated by using dynamic cell cultures that the in vivo situation is simulated more accurately and thereby can be applied as a novel system to investigate the performance of nanoparticle systems in vivo more reliable.


Subject(s)
Methacrylates/metabolism , Nanoparticles/metabolism , Animals , Cell Communication , Cells, Cultured , Coculture Techniques , Drug Delivery Systems , Erythrocyte Aggregation/drug effects , Hemolysis/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Macrophages/metabolism , Methacrylates/adverse effects , Methacrylates/pharmacokinetics , Mice , Nanoparticles/adverse effects , Particle Size , Polymers/chemistry , Shear Strength
4.
Aging Cell ; 14(4): 497-510, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25902704

ABSTRACT

The workshop entitled 'Interventions to Slow Aging in Humans: Are We Ready?' was held in Erice, Italy, on October 8-13, 2013, to bring together leading experts in the biology and genetics of aging and obtain a consensus related to the discovery and development of safe interventions to slow aging and increase healthy lifespan in humans. There was consensus that there is sufficient evidence that aging interventions will delay and prevent disease onset for many chronic conditions of adult and old age. Essential pathways have been identified, and behavioral, dietary, and pharmacologic approaches have emerged. Although many gene targets and drugs were discussed and there was not complete consensus about all interventions, the participants selected a subset of the most promising strategies that could be tested in humans for their effects on healthspan. These were: (i) dietary interventions mimicking chronic dietary restriction (periodic fasting mimicking diets, protein restriction, etc.); (ii) drugs that inhibit the growth hormone/IGF-I axis; (iii) drugs that inhibit the mTOR-S6K pathway; or (iv) drugs that activate AMPK or specific sirtuins. These choices were based in part on consistent evidence for the pro-longevity effects and ability of these interventions to prevent or delay multiple age-related diseases and improve healthspan in simple model organisms and rodents and their potential to be safe and effective in extending human healthspan. The authors of this manuscript were speakers and discussants invited to the workshop. The following summary highlights the major points addressed and the conclusions of the meeting.


Subject(s)
Aging/drug effects , Biological Factors/therapeutic use , Longevity/drug effects , Prescription Drugs/therapeutic use , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Aging/genetics , Animals , Caloric Restriction/methods , Diet , Enzyme Activation , Gene Expression Regulation , Growth Hormone/antagonists & inhibitors , Growth Hormone/genetics , Growth Hormone/metabolism , Humans , Insulin-Like Growth Factor I/antagonists & inhibitors , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Longevity/genetics , Mice , Ribosomal Protein S6 Kinases/antagonists & inhibitors , Ribosomal Protein S6 Kinases/genetics , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction , Sirtuins/genetics , Sirtuins/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
5.
Gastroenterology ; 149(1): 177-189.e10, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25797700

ABSTRACT

BACKGROUND & AIMS: Senescence prevents cellular transformation. We investigated whether vascular endothelial growth factor (VEGF) signaling via its receptor, VEGFR2, regulates senescence and proliferation of tumor cells in mice with colitis-associated cancer (CAC). METHODS: CAC was induced in VEGFR2(ΔIEC) mice, which do not express VEGFR2 in the intestinal epithelium, and VEGFR2(fl/fl) mice (controls) by administration of azoxymethane followed by dextran sodium sulfate. Tumor development and inflammation were determined by endoscopy. Colorectal tissues were collected for immunoblot, immunohistochemical, and quantitative polymerase chain reaction analyses. Findings from mouse tissues were confirmed in human HCT116 colorectal cancer cells. We analyzed colorectal tumor samples from patients before and after treatment with bevacizumab. RESULTS: After colitis induction, VEGFR2(ΔIEC) mice developed significantly fewer tumors than control mice. A greater number of intestinal tumor cells from VEGFR2(ΔIEC) mice were in senescence than tumor cells from control mice. We found VEGFR2 to activate phosphatidylinositol-4,5-bisphosphate-3-kinase and AKT, resulting in inactivation of p21 in HCT116 cells. Inhibitors of VEGFR2 and AKT induced senescence in HCT116 cells. Tumor cell senescence promoted an anti-tumor immune response by CD8(+) T cells in mice. Patients whose tumor samples showed an increase in the proportion of senescent cells after treatment with bevacizumab had longer progression-free survival than patients in which the proportion of senescent tumor cells did not change before and after treatment. CONCLUSIONS: Inhibition of VEGFR2 signaling leads to senescence of human and mouse colorectal cancer cells. VEGFR2 interacts with phosphatidylinositol-4,5-bisphosphate-3-kinase and AKT to inactivate p21. Colorectal tumor senescence and p21 level correlate with patient survival during treatment with bevacizumab.


Subject(s)
Cell Proliferation/genetics , Cellular Senescence/genetics , Colitis/genetics , Colorectal Neoplasms/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Bevacizumab , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation/drug effects , Cellular Senescence/drug effects , Colitis/complications , Colitis/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Dextran Sulfate/adverse effects , Disease Models, Animal , Disease-Free Survival , Female , HCT116 Cells , Humans , Male , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-akt/metabolism
6.
Biomaterials ; 33(33): 8277-85, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22906604

ABSTRACT

Living autologous tissue engineered vascular-grafts (TEVGs) with growth-capacity may overcome the limitations of contemporary artificial-prostheses. However, the multi-step in vitro production of TEVGs requires extensive ex vivo cell-manipulations with unknown effects on functionality and quality of TEVGs due to an accelerated biological age of the cells. Here, the impact of biological cell-age and tissue-remodeling capacity of TEVGs in relation to their clinical long-term functionality are investigated. TEVGs were implanted as pulmonary-artery (PA) replacements in juvenile sheep and followed for up to 240 weeks (∼4.5years). Telomere length and telomerase activity were compared amongst TEVGs and adjacent native tissue. Telomerase-activity of in vitro expanded autologous vascular-cells prior to seeding was <5% as compared to a leukemic cell line, indicating biological-aging associated with decreasing telomere-length with each cellular-doubling. Up to 100 weeks, the cells in the TEVGs had consistently shorter telomeres compared to the native counterpart, whereas no significant differences were detectable at 240 weeks. Computed tomography (CT) analysis demonstrated physiological wall-pressures, shear-stresses, and flow-pattern comparable to the native PA. There were no signs of degeneration detectable and continuous native-analogous growth was confirmed by vessel-volumetry. TEVGs exhibit a higher biological age compared to their native counterparts. However, despite of this tissue engineering technology related accelerated biological-aging, growth-capacity and long-term functionality was not compromised. To the contrary, extensive in-vivo remodeling processes with substantial endogenous cellular turnover appears to result in "TEVG rejuvenation" and excellent clinical performance. As these large-animal results can be extrapolated to approximately 20 human years, this study suggests long-term clinical-safety of cardiovascular in vitro tissue engineering and may contribute to safety-criteria as to first-in-man clinical-trials.


Subject(s)
Aging/physiology , Endothelial Cells/cytology , Tissue Engineering/methods , Animals , Cells, Cultured , Endothelial Cells/metabolism , Flow Cytometry , Immunohistochemistry , Pulmonary Artery/cytology , Sheep , Telomerase/metabolism , Telomere/metabolism
7.
PLoS One ; 6(1): e14599, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21298052

ABSTRACT

Muscle differentiation is a highly conserved process that occurs through the activation of quiescent satellite cells whose progeny proliferate, differentiate, and fuse to generate new myofibers. A defined pattern of myogenic transcription factors is orchestrated during this process and is regulated via distinct signaling cascades involving various intracellular signaling pathways, including members of the protein kinase C (PKC) family. The protein kinase D (PKD) isoenzymes PKD1, -2, and -3, are prominent downstream targets of PKCs and phospholipase D in various biological systems including mouse and could hence play a role in muscle differentiation. In the present study, we used a mouse myoblast cell line (C2C12) as an in vitro model to investigate the role of PKDs, in particular PKD2, in muscle stem cell differentiation. We show that C2C12 cells express all PKD isoforms with PKD2 being highly expressed. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated during the initiation of mouse myoblast differentiation. Selective inhibition of PKCs or PKDs by pharmacological inhibitors blocked myotube formation. Depletion of PKD2 by shRNAs resulted in a marked inhibition of myoblast cell fusion. PKD2-depleted cells exhibit impaired regulation of muscle development-associated genes while the proliferative capacity remains unaltered. Vice versa forced expression of PKD2 increases myoblast differentiation. These findings were confirmed in primary mouse satellite cells where myotube fusion was also decreased upon inhibition of PKDs. Active PKD2 induced transcriptional activation of myocyte enhancer factor 2D and repression of Pax3 transcriptional activity. In conclusion, we identify PKDs, in particular PKD2, as a major mediator of muscle cell differentiation in vitro and thereby as a potential novel target for the modulation of muscle regeneration.


Subject(s)
Cell Differentiation , Myoblasts/cytology , Protein Kinases/physiology , Animals , Cells, Cultured , Mice , Muscle Development/genetics , Muscle Fibers, Skeletal , Muscles/cytology , Muscles/physiology , Phosphorylation , Protein Isoforms , Protein Kinase D2 , Regeneration , Satellite Cells, Skeletal Muscle/cytology
8.
J Gastroenterol Hepatol ; 20(9): 1422-8, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16105131

ABSTRACT

BACKGROUND AND AIM: Treatment of inoperable hepatocellular carcinoma (HCC) remains a major clinical problem. The only efficient treatment options are percutaneous ethanol injection (PEI), radiofrequency ablation (RF) and transarterial chemoembolization (TACE), but these therapies are only applicable to patients with limited tumor spread and sufficient liver function. For patients with advanced tumor and poor liver function a systemic therapy is required. Octreotide, a somatostatin analog with antimitotic activity, is a controversial treatment option. METHODS: In the current study we prospectively assigned a group of 41 HCC patients with advanced HCC and cirrhosis stage to treatment with octreotide. The clinical and laboratory parameters were monitored and survival was analyzed using a Cox regression model. RESULTS: The medium survival in the group of all patients was 571 days. Using the Cox regression there was a significant difference in survival for alpha-fetoprotein (P = 0.026) and Quick's test (P = 0.009) in consideration of the tumor dimension compared to the other characteristics. The tumor remained stable in 26 patients over a mean follow-up of 21 months and progressed in 14 patients. One patient showed a partial response. There was no incidence of severe side-effects (WHO grade 3-4). During the follow-up time, 14 patients died because of their underlying disease. CONCLUSIONS: Treatment with octreotide appears safe and patients show similar survival compared to a group of patients with advanced HCC treated with TACE. Further studies are necessary to investigate somatostatin receptor subtypes or receptor mutations of patients with advanced HCC in relation to their response.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Liver Cirrhosis/complications , Liver Neoplasms/drug therapy , Octreotide/therapeutic use , Aged , Aged, 80 and over , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/pathology , Female , Humans , Liver Cirrhosis/pathology , Liver Neoplasms/complications , Liver Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Prospective Studies , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL