Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Leukemia ; 27(2): 353-61, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22810507

ABSTRACT

Recently, the p53-miR-34a network has been identified to have an important role in tumorigenesis. As in acute myeloid leukemia with complex karyotype (CK-AML) TP53 alterations are the most common known molecular lesion, we further analyzed the p53-miR-34a axis in a large cohort of CK-AML with known TP53 status (TP53(altered), n=57; TP53(unaltered), n=31; altered indicates loss and/or mutation of TP53). Profiling microRNA (miRNA) expression delineated TP53 alteration-associated miRNA profiles, and identified miR-34a and miR-100 as the most significantly down- and upregulated miRNA, respectively. Moreover, we found a distinct miR-34a expression-linked gene expression profile enriched for genes belonging to p53-associated pathways, and implicated in cell cycle progression or apoptosis. Clinically, low miR-34a expression and TP53 alterations predicted for chemotherapy resistance and inferior outcome. Notably, in TP53(unaltered) CK-AML, high miR-34a expression predicted for inferior overall survival (OS), whereas in TP53(biallelic altered) CK-AML, high miR-34a expression pointed to better OS. Thus, detailed molecular profiling links impaired p53 to decreased miR-34a expression, but also identifies p53-independent miR-34a induction mechanisms as shown in TP53(biallelic altered) cell lines treated with 15-deoxy-Δ(12,14)-prostaglandin. An improved understanding of this mechanism might provide novel therapeutic options to restore miR-34a function and thereby induce cell cycle arrest and apoptosis in TP53(altered) CK-AML.


Subject(s)
Biomarkers, Tumor/genetics , Chromosome Aberrations , Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , Tumor Suppressor Protein p53/genetics , Adolescent , Adult , Aged , Cells, Cultured , Female , Gene Expression Profiling , Humans , Karyotyping , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Survival Rate , Young Adult
2.
Leukemia ; 25(11): 1728-38, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21701487

ABSTRACT

Core-binding factor (CBF) leukemias, characterized by translocations t(8;21) or inv(16)/t(16;16) targeting the CBF, constitute acute myeloid leukemia (AML) subgroups with favorable prognosis. However, about 40% of patients relapse and the current classification system does not fully reflect this clinical heterogeneity. Previously, gene expression profiling (GEP) revealed two distinct CBF leukemia subgroups displaying significant outcome differences and identified apoptotic signaling, MAPKinase signaling and chemotherapy-resistance mechanisms among the most significant differentially regulated pathways. We now tested different inhibitors of the respective pathways in a cell line model (six cell lines reflecting the CBF subgroup-specific gene expression alterations), and found apoptotic signaling to be differentiating between the CBF subgroup models. In accordance, primary samples from newly diagnosed CBF AML patients (n=23) also showed differential sensitivity to in vitro treatment with a Smac mimetic such as BV6, an antagonist of inhibitor of apoptosis (IAP) proteins, and ABT-737, a BCL2 inhibitor. Furthermore, GEP revealed the BV6-resistant cases to resemble the previously identified unfavorable CBF subgroup. Thus, our current findings show deregulated IAP expression and apoptotic signaling to differentiate clinically relevant CBF subgroups, which were independent of known molecular markers, thereby providing a starting point for novel therapeutic approaches.


Subject(s)
Apoptosis , Core Binding Factors/metabolism , Leukemia/metabolism , Oligopeptides/metabolism , Signal Transduction , Base Sequence , Blotting, Western , Cell Line , DNA Primers , Humans , Leukemia/pathology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL