Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters








Publication year range
1.
Sci Immunol ; 9(96): eadn3954, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848342

ABSTRACT

During ontogeny, γδ T cells emerge from the thymus and directly seed peripheral tissues for in situ immunity. However, their functional role in humans has largely been defined from blood. Here, we analyzed the phenotype, transcriptome, function, and repertoire of human γδ T cells in blood and mucosal and lymphoid tissues from 176 donors across the life span, revealing distinct profiles in children compared with adults. In early life, clonally diverse Vδ1 subsets predominate across blood and tissues, comprising naïve and differentiated effector and tissue repair functions, whereas cytolytic Vδ2 subsets populate blood, spleen, and lungs. With age, Vδ1 and Vδ2 subsets exhibit clonal expansions and elevated cytolytic signatures, which are disseminated across sites. In adults, Vδ2 cells predominate in blood, whereas Vδ1 cells are enriched across tissues and express residency profiles. Thus, antigenic exposures over childhood drive the functional evolution and tissue compartmentalization of γδ T cells, leading to age-dependent roles in immunity.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , Humans , Child , Receptors, Antigen, T-Cell, gamma-delta/immunology , Adult , Child, Preschool , Adolescent , Young Adult , Female , Infant , Male , Middle Aged , T-Lymphocyte Subsets/immunology , Aged , Infant, Newborn
2.
Immunity ; 56(8): 1894-1909.e5, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37421943

ABSTRACT

Infancy and childhood are critical life stages for generating immune memory to protect against pathogens; however, the timing, location, and pathways for memory development in humans remain elusive. Here, we investigated T cells in mucosal sites, lymphoid tissues, and blood from 96 pediatric donors aged 0-10 years using phenotypic, functional, and transcriptomic profiling. Our results revealed that memory T cells preferentially localized in the intestines and lungs during infancy and accumulated more rapidly in mucosal sites compared with blood and lymphoid organs, consistent with site-specific antigen exposure. Early life mucosal memory T cells exhibit distinct functional capacities and stem-like transcriptional profiles. In later childhood, they progressively adopt proinflammatory functions and tissue-resident signatures, coincident with increased T cell receptor (TCR) clonal expansion in mucosal and lymphoid sites. Together, our findings identify staged development of memory T cells targeted to tissues during the formative years, informing how we might promote and monitor immunity in children.


Subject(s)
Lymphoid Tissue , Memory T Cells , Child , Humans , Infant , CD8-Positive T-Lymphocytes , Immunologic Memory , Lymphoid Tissue/metabolism , Mucous Membrane , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Infant, Newborn , Child, Preschool
3.
Nat Immunol ; 24(8): 1370-1381, 2023 08.
Article in English | MEDLINE | ID: mdl-37460638

ABSTRACT

Infants and young children are more susceptible to common respiratory pathogens than adults but can fare better against novel pathogens like severe acute respiratory syndrome coronavirus 2. The mechanisms by which infants and young children mount effective immune responses to respiratory pathogens are unknown. Through investigation of lungs and lung-associated lymph nodes from infant and pediatric organ donors aged 0-13 years, we show that bronchus-associated lymphoid tissue (BALT), containing B cell follicles, CD4+ T cells and functionally active germinal centers, develop during infancy. BALT structures are prevalent around lung airways during the first 3 years of life, and their numbers decline through childhood coincident with the accumulation of memory T cells. Single-cell profiling and repertoire analysis reveals that early life lung B cells undergo differentiation, somatic hypermutation and immunoglobulin class switching and exhibit a more activated profile than lymph node B cells. Moreover, B cells in the lung and lung-associated lymph nodes generate biased antibody responses to multiple respiratory pathogens compared to circulating antibodies, which are mostly specific for vaccine antigens in the early years of life. Together, our findings provide evidence for BALT as an early life adaptation for mobilizing localized immune protection to the diverse respiratory challenges during this formative life stage.


Subject(s)
COVID-19 , Lymphoid Tissue , Adult , Infant , Humans , Child , Child, Preschool , Bronchi/pathology , COVID-19/pathology , B-Lymphocytes , Lymph Nodes
4.
J Exp Med ; 220(8)2023 08 07.
Article in English | MEDLINE | ID: mdl-37133746

ABSTRACT

SARS-CoV-2 infection for most children results in mild or minimal symptoms, though in rare cases severe disease can develop, including a multisystem inflammatory syndrome (MIS-C) with myocarditis. Here, we present longitudinal profiling of immune responses during acute disease and following recovery in children who developed MIS-C, relative to children who experienced more typical symptoms of COVID-19. T cells in acute MIS-C exhibited transient signatures of activation, inflammation, and tissue residency which correlated with cardiac disease severity, while T cells in acute COVID-19 upregulated markers of follicular helper T cells for promoting antibody production. The resultant memory immune response in recovery showed increased frequencies of virus-specific memory T cells with pro-inflammatory functions in children with prior MIS-C compared to COVID-19 while both cohorts generated comparable antibody responses. Together our results reveal distinct effector and memory T cell responses in pediatric SARS-CoV-2 infection delineated by clinical syndrome, and a potential role for tissue-derived T cells in the immune pathology of systemic disease.


Subject(s)
COVID-19 , Humans , Child , SARS-CoV-2 , Inflammation , Severity of Illness Index
5.
Immunol Rev ; 309(1): 25-39, 2022 08.
Article in English | MEDLINE | ID: mdl-35752871

ABSTRACT

The SARS-CoV-2 pandemic has demonstrated the importance of studying antiviral immunity within sites of infection to gain insights into mechanisms for immune protection and disease pathology. As SARS-CoV-2 is tropic to the respiratory tract, many studies of airway washes, lymph node aspirates, and postmortem lung tissue have revealed site-specific immune dynamics that are associated with the protection or immunopathology but are not readily observed in circulation. This review summarizes the growing body of work identifying immune processes in tissues and their interplay with immune responses in circulation during acute SARS-CoV-2 infection, severe disease, and memory persistence. Establishment of tissue resident immunity also may have implications for vaccination and the durability of immune memory and protection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Lung , Pandemics , Vaccination
6.
Cell Rep Med ; 3(2): 100509, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35243417

ABSTRACT

The induction of broadly neutralizing antibodies (bNAbs) that target the hemagglutinin stalk domain is a promising strategy for the development of "universal" influenza virus vaccines. bNAbs can be boosted in adults by sequential exposure to heterosubtypic viruses through natural infection or vaccination. However, little is known about if or how bNAbs are induced by vaccination in more immunologically naive children. Here, we describe the impact of repeated seasonal influenza vaccination and vaccine type on induction of bNAbs against group 1 influenza viruses in a pediatric cohort enrolled in randomized controlled trials of seasonal influenza vaccination. Repeated seasonal vaccination results in significant boosting of a durable bNAb response. Boosting of serological bNAb titers is comparable within inactivated and live attenuated (LAIV) vaccinees and declines with age. These data provide insights into vaccine-elicited bNAb induction in children, which have important implications for the design of universal influenza vaccine modalities in this critical population.


Subject(s)
Influenza Vaccines , Influenza, Human , Adult , Broadly Neutralizing Antibodies , Child , Humans , Influenza, Human/prevention & control , Seasons , Vaccines, Attenuated
7.
J Clin Invest ; 131(23)2021 12 01.
Article in English | MEDLINE | ID: mdl-34609969

ABSTRACT

The capacity of respiratory viruses to undergo evolution within the respiratory tract raises the possibility of evolution under the selective pressure of the host environment or drug treatment. Long-term infections in immunocompromised hosts are potential drivers of viral evolution and development of infectious variants. We showed that intrahost evolution in chronic human parainfluenza virus 3 (HPIV3) infection in immunocompromised individuals elicited mutations that favored viral entry and persistence, suggesting that similar processes may operate across enveloped respiratory viruses. We profiled longitudinal HPIV3 infections from 2 immunocompromised individuals that persisted for 278 and 98 days. Mutations accrued in the HPIV3 attachment protein hemagglutinin-neuraminidase (HN), including the first in vivo mutation in HN's receptor binding site responsible for activating the viral fusion process. Fixation of this mutation was associated with exposure to a drug that cleaves host-cell sialic acid moieties. Longitudinal adaptation of HN was associated with features that promote viral entry and persistence in cells, including greater avidity for sialic acid and more active fusion activity in vitro, but not with antibody escape. Long-term infection thus led to mutations promoting viral persistence, suggesting that host-directed therapeutics may support the evolution of viruses that alter their biophysical characteristics to persist in the face of these agents in vivo.


Subject(s)
Immunocompromised Host , Lung Diseases/virology , Lung/virology , Parainfluenza Virus 3, Human/metabolism , Paramyxoviridae Infections/virology , Adult , Binding Sites , DNA Mutational Analysis , Female , Gene Frequency , Graft vs Host Disease/drug therapy , HEK293 Cells , Humans , Leukemia, Myeloid, Acute , Mutation , Mycophenolic Acid/administration & dosage , N-Acetylneuraminic Acid/chemistry , Parainfluenza Virus 3, Human/genetics , Paramyxoviridae Infections/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/virology , Receptors, Virus/metabolism , Sirolimus/administration & dosage , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Virus Internalization , Young Adult
8.
Sci Immunol ; 6(65): eabl9105, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34618554

ABSTRACT

Adaptive immune responses to SARS-CoV-2 infection have been extensively characterized in blood; however, most functions of protective immunity must be accomplished in tissues. Here, we report from examination of SARS-CoV-2 seropositive organ donors (ages 10 to 74) that CD4+ T, CD8+ T, and B cell memory generated in response to infection is present in the bone marrow, spleen, lung, and multiple lymph nodes (LNs) for up to 6 months after infection. Lungs and lung-associated LNs were the most prevalent sites for SARS-CoV-2­specific memory T and B cells with significant correlations between circulating and tissue-resident memory T and B cells in all sites. We further identified SARS-CoV-2­specific germinal centers in the lung-associated LNs up to 6 months after infection. SARS-CoV-2­specific follicular helper T cells were also abundant in lung-associated LNs and lungs. Together, the results indicate local tissue coordination of cellular and humoral immune memory against SARS-CoV-2 for site-specific protection against future infectious challenges.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Cellular , Immunologic Memory , Lymphocytes/immunology , SARS-CoV-2/immunology , Female , Humans , Male , Organ Specificity/immunology
9.
ACS Nano ; 15(8): 12794-12803, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34291895

ABSTRACT

Measles virus (MeV) infection remains a significant public health threat despite ongoing global efforts to increase vaccine coverage. As eradication of MeV stalls, and vulnerable populations expand, effective antivirals against MeV are in high demand. Here, we describe the development of an antiviral peptide that targets the MeV fusion (F) protein. This antiviral peptide construct is composed of a carbobenzoxy-d-Phe-l-Phe-Gly (fusion inhibitor peptide; FIP) conjugated to a lipidated MeV F C-terminal heptad repeat (HRC) domain derivative. Initial in vitro testing showed high antiviral potency and specific targeting of MeV F-associated cell plasma membranes, with minimal cytotoxicity. The FIP and HRC-derived peptide conjugates showed synergistic antiviral activities when administered individually. However, their chemical conjugation resulted in markedly increased antiviral potency. In vitro mechanistic experiments revealed that the FIP-HRC lipid conjugate exerted its antiviral activity predominantly through stabilization of the prefusion F, while HRC-derived peptides alone act predominantly on the F protein after its activation. Coupled with in vivo experiments showing effective prevention of MeV infection in cotton rats, FIP-HRC lipid conjugates show promise as potential MeV antivirals via specific targeting and stabilization of the prefusion MeV F structure.


Subject(s)
Measles virus , Measles , Humans , Viral Fusion Proteins , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Peptides/pharmacology , Peptides/chemistry , Lipids/pharmacology
10.
Transplantation ; 105(6): 1137-1139, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34048416

Subject(s)
Immunity, Innate
11.
J Clin Virol ; 129: 104506, 2020 08.
Article in English | MEDLINE | ID: mdl-32585620

ABSTRACT

BACKGROUND: Respiratory syncytial virus is the main cause of acute respiratory infections leading to a considerable morbidity and mortality among under-5 years children. A comprehensive scheme of RSV virus evolution is of great value in implementing effective universal RSV vaccine. OBJECTIVE: We investigated the clinical spectrum and molecular characteristics of detected RSV over a period of seven years (January 2011 to June 2017) in Antananarivo, the capital city of Madagascar. STUDY DESIGN: 671 nasopharyngeal samples taken from children aged less than 5 years suffered from ARI were screened for RSV by real-time PCR. Clinical data were retrieved from case report forms. Genotype identification was performed by reverse-transcription PCR and sequencing of the second hyper variable region (HVR2) of the G glycoprotein. RESULTS: Amongst samples tested, 292 (43.5 %) were found positive for RSV. RSV A predominated during the study period which accounted for 62.3 % (182/292) of positive samples while RSV B represented 37.0 % (108/292). Phylogenetic analyses identified NA1 and ON1 genotypes among RSV A. Though NA1 widespread from 2011 to 2013, ON1 became prevalent during the following years. Among RSV B, THB, CB1 and BA9 genotypes were detected. A co-circulation of THB and CB1 strains occurred during the 2011 season that was substituted by the BA9 from 2012. Malagasy ON1 strains carried some characteristic amino acid substitutions that distinguish them from the worldwide ON1 strains. By analyzing clinical spectrum, ON1 and BA genotypes seemed to prevail in mild infections compared to NA1. CONCLUSION: Results obtained here will have its implication in predicting temporal evolution of RSV at the local level. Considering the insularity of the country, information obtained should help in comparative analysis with global RSV strains to optimize vaccine efficacy.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Genetic Variation , Genotype , Humans , Infant , Madagascar , Molecular Epidemiology , Phylogeny , Respiratory Syncytial Virus, Human/genetics
12.
J Virol ; 93(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30728259

ABSTRACT

A clinical isolate of measles virus (MeV) bearing a single amino acid alteration in the viral fusion protein (F; L454W) was previously identified in two patients with lethal sequelae of MeV central nervous system (CNS) infection. The mutation dysregulated the viral fusion machinery so that the mutated F protein mediated cell fusion in the absence of known MeV cellular receptors. While this virus could feasibly have arisen via intrahost evolution of the wild-type (wt) virus, it was recently shown that the same mutation emerged under the selective pressure of small-molecule antiviral treatment. Under these conditions, a potentially neuropathogenic variant emerged outside the CNS. While CNS adaptation of MeV was thought to generate viruses that are less fit for interhost spread, we show that two animal models can be readily infected with CNS-adapted MeV via the respiratory route. Despite bearing a fusion protein that is less stable at 37°C than the wt MeV F, this virus infects and replicates in cotton rat lung tissue more efficiently than the wt virus and is lethal in a suckling mouse model of MeV encephalitis even with a lower inoculum. Thus, either during lethal MeV CNS infection or during antiviral treatment in vitro, neuropathogenic MeV can emerge, can infect new hosts via the respiratory route, and is more pathogenic (at least in these animal models) than wt MeV.IMPORTANCE Measles virus (MeV) infection can be severe in immunocompromised individuals and lead to complications, including measles inclusion body encephalitis (MIBE). In some cases, MeV persistence and subacute sclerosing panencephalitis (SSPE) occur even in the face of an intact immune response. While they are relatively rare complications of MeV infection, MIBE and SSPE are lethal. This work addresses the hypothesis that despite a dysregulated viral fusion complex, central nervous system (CNS)-adapted measles virus can spread outside the CNS within an infected host.


Subject(s)
Central Nervous System/virology , Encephalitis, Viral , Inclusion Bodies, Viral , Lung/virology , Measles virus/physiology , Measles , Mutation, Missense , Viral Fusion Proteins , Virus Replication , Amino Acid Substitution , Animals , Central Nervous System/metabolism , Chlorocebus aethiops , Disease Models, Animal , Encephalitis, Viral/genetics , Encephalitis, Viral/metabolism , Encephalitis, Viral/transmission , Humans , Inclusion Bodies, Viral/genetics , Inclusion Bodies, Viral/metabolism , Lung/metabolism , Measles/metabolism , Measles/transmission , Mice , Mice, Transgenic , Sigmodontinae , Vero Cells , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism
13.
J Virol ; 93(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30487282

ABSTRACT

During a measles virus (MeV) epidemic in 2009 in South Africa, measles inclusion body encephalitis (MIBE) was identified in several HIV-infected patients. Years later, children are presenting with subacute sclerosing panencephalitis (SSPE). To investigate the features of established MeV neuronal infections, viral sequences were analyzed from brain tissue samples of a single SSPE case and compared with MIBE sequences previously obtained from patients infected during the same epidemic. Both the SSPE and the MIBE viruses had amino acid substitutions in the ectodomain of the F protein that confer enhanced fusion properties. Functional analysis of the fusion complexes confirmed that both MIBE and SSPE F protein mutations promoted fusion with less dependence on interaction by the viral receptor-binding protein with known MeV receptors. While the SSPE F required the presence of a homotypic attachment protein, MeV H, in order to fuse, MIBE F did not. Both F proteins had decreased thermal stability compared to that of the corresponding wild-type F protein. Finally, recombinant viruses expressing MIBE or SSPE fusion complexes spread in the absence of known MeV receptors, with MIBE F-bearing viruses causing large syncytia in these cells. Our results suggest that alterations to the MeV fusion complex that promote fusion and cell-to-cell spread in the absence of known MeV receptors is a key property for infection of the brain.IMPORTANCE Measles virus can invade the central nervous system (CNS) and cause severe neurological complications, such as MIBE and SSPE. However, mechanisms by which MeV enters the CNS and triggers the disease remain unclear. We analyzed viruses from brain tissue of individuals with MIBE or SSPE, infected during the same epidemic, after the onset of neurological disease. Our findings indicate that the emergence of hyperfusogenic MeV F proteins is associated with infection of the brain. We also demonstrate that hyperfusogenic F proteins permit MeV to enter cells and spread without the need to engage nectin-4 or CD150, known receptors for MeV that are not present on neural cells.


Subject(s)
Measles virus/genetics , Subacute Sclerosing Panencephalitis/genetics , Viral Fusion Proteins/genetics , Amino Acid Substitution , Animals , Brain/virology , Cell Adhesion Molecules/metabolism , Chlorocebus aethiops , Epidemics , Female , Genotype , Giant Cells/virology , HEK293 Cells , Humans , Male , Measles/epidemiology , Measles/metabolism , Measles/virology , Mutation , Neurons/virology , South Africa , Subacute Sclerosing Panencephalitis/virology , Vero Cells , Viral Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL