Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16808, 2024 07 22.
Article in English | MEDLINE | ID: mdl-39039161

ABSTRACT

A new modified cellulose with diaminoguanidine (Cel-Gua) synthesized for specific recovery of Cu (II), Cd (II), and Hg (II) from the alum sample. Cellulose was silanized by 3-chloropropyltrimethoxysilane and then was modified with diaminoguanidine to obtain N-donor chelating fibers. Fourier transform-infrared spectroscopy, scanning electron microscopy, X-ray diffraction, zeta potential, electrons disperse X-ray analysis, elemental analyses (C, H and N), and thermogravimetric analysis were used for characterization. Factors influencing the adsorption were thoroughly examined. Under the optimal conditions, the Cel-Gua sorbent displayed maximum adsorption capacities of 94.33, 112.10 and 95.78 mg/g for Cu (II), Cd (II), and Hg (II), respectively. The sorption process of metal ions is equipped by kinetic model PSO and Langmuir adsorption isotherm. The calculated thermodynamic variables confirmed that the adsorption of Cu (II), Cd (II) and Hg (II) by Cel-Gua sorbent is a spontaneous and exothermic process. In our study, we used the molecular operating environment software to conduct molecular docking simulations on the Cel-Gua compound. The results of the docking simulations showed that the Cel-Gua compound displayed greater potency and a stronger affinity for the Avr2 effector protein derived from Fusarium oxysporum, a fungal plant pathogen (code 5OD4). The adsorbent was stable for 7 cycles, thus allowing its safe reutilization.


Subject(s)
Cadmium , Cellulose , Copper , Molecular Docking Simulation , Cellulose/chemistry , Copper/chemistry , Cadmium/chemistry , Adsorption , Mercury/chemistry , Alum Compounds/chemistry , Kinetics , Thermodynamics , Spectroscopy, Fourier Transform Infrared , Chelating Agents/chemistry
2.
BMC Genomics ; 25(1): 162, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331729

ABSTRACT

In this work, a novel isatin-Schiff base L2 had been synthesized through a simple reaction between isatin and 2-amino-5-methylthio-1,3,4-thiadiazole. The produced Schiff base L2 was then subjected to a hydrothermal reaction with cerium chloride to produce the cerium (III)-Schiff base complex C2. Several spectroscopic methods, including mass spectra, FT-IR, elemental analysis, UV-vis, 13C-NMR, 1H-NMR, Thermogravimetric Analysis, HR-TEM, and FE-SEM/EDX, were used to completely characterize the produced L2 and C2. A computer simulation was performed using the MOE software program to find out the probable biological resistance of studied compounds against the proteins in some types of bacteria or fungi. To investigate the interaction between the ligand and its complex, we conducted molecular docking simulations using the molecular operating environment (MOE). The docking simulation findings revealed that the complex displayed greater efficacy and demonstrated a stronger affinity for Avr2 effector protein from the fungal plant pathogen Fusarium oxysporum (code 5OD4) than the original ligand. The antibacterial activity of the ligand and its Ce3+ complex were applied in vitro tests against different microorganism. The study showed that the complex was found to be more effective than the ligand.


Subject(s)
Cerium , Isatin , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Isatin/pharmacology , Isatin/chemistry , Cerium/pharmacology , Schiff Bases/pharmacology , Schiff Bases/chemistry , Computer Simulation , Ligands , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
3.
RSC Adv ; 10(10): 5853-5863, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-35497461

ABSTRACT

In this paper, a new isatin-Schiff base L1 was prepared via a simple reaction of isatin with 2-amino-3-hydroxypyridin. Subsequently, cerium(iii)-Schiff base complex C1 was obtained through the reaction of the prepared Schiff base L1 with cerium chloride via a hydrothermal method. The prepared L1, as well as C1, were fully characterized using many spectroscopic techniques, such as mass spectra, elemental analysis, UV-vis, FT-IR, 1H-NMR, 13C-NMR, FE-SEM/EDX, and HR-TEM. A photoluminescence study (PL) was carried out for the prepared complex C1. The promising photoluminescence results revealed that C1 could be used for the detection of creatinine in different human biological samples as a selective optical biosensor. The results showed that C1 after excitation at 370 nm has a strong emission band at 560 nm. The calibration graph was obtained in a wide concentration range between 2.5 and 480 nM creatinine with limits of detection (LOD) and quantitation (LOQ) of 1.07 and 3.25 nM, respectively. In addition, the correlation coefficient (r 2) was found to be 0.9890. The PL spectra indicate that C1 has high selectivity toward creatinine without interference from other different analytes and can be successfully used as an optical sensor for creatinine detection. The mechanism of quenching between the Ce(iii) complex and creatinine was a dynamic type. The geometry of Schiff base L1 and its cerium(iii) complex C1 was proven by using density functional theory (DFT). The energy of the LUMO and HOMO, energy gap, dipole moment and structure-activity relationship were determined and confirmed.

SELECTION OF CITATIONS
SEARCH DETAIL