Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Curr Radiopharm ; 17(1): 55-67, 2024.
Article in English | MEDLINE | ID: mdl-38817005

ABSTRACT

BACKGROUND: Exposure to physical contamination during chemotherapy, including non-ionizing electromagnetic fields, raises concerns about the widespread sources of exposure to this type of radiation. Glioblastoma multiforme (GBM) is an aggressive central nervous system tumor that is hard to treat due to resistance to drugs such as temozolomide (TMZ). OBJECTIVE: Electromagnetic fields (EMF) and haloperidol (HLP) may have anticancer effects. In this study, we investigated the effects of TMZ, HLP, and EMF on GBM cell lines and analyzed the association between non-ionizing radiation and the risk of change in drug performance. METHODS: Cell viability and reactive oxygen species (ROS) generation were measured by MTT and NBT assay, respectively. Then, the expression levels of breast cancer-resistant protein (BCRP), Bax, Bcl2, Nestin, vascular endothelial growth factor (VEGF) genes, and P53, Bax, and Bcl2 Proteins were evaluated by real-time PCR and western blot. RESULTS: Co-treatment of GBM cells by HLP and TMZ enhanced apoptosis in T-98G and A172 cells by increasing the expression of P53 and Bax and decreasing Bcl-2. Interestingly, exposure of GBM cells to EMF decreased apoptosis in the TMZ+HLP group. CONCLUSION: In conclusion, EMF reduced the synergistic effect of TMZ and HLP. This hypothesis that patients who are treated for brain tumors and suffer from depression should not be exposed to EMF is proposed in the present study. There appears to be an urgent need to reconsider exposure limits for low-frequency magnetic fields, based on experimental and epidemiological research, the relationship between exposure to non-ionizing radiation and adverse human health effects.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Apoptosis , Cell Survival , Electromagnetic Fields , Haloperidol , Nestin , Temozolomide , Vascular Endothelial Growth Factor A , Humans , Antineoplastic Agents, Alkylating/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/radiation effects , Brain Neoplasms/radiotherapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Glioblastoma/radiotherapy , Glioblastoma/metabolism , Glioma/radiotherapy , Glioma/metabolism , Glioma/pathology , Haloperidol/pharmacology , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/metabolism , Neoplasm Proteins/radiation effects , Nestin/genetics , Nestin/metabolism , Nestin/radiation effects , Reactive Oxygen Species/metabolism , Temozolomide/pharmacology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/radiation effects
2.
Brain Behav ; 13(5): e2986, 2023 05.
Article in English | MEDLINE | ID: mdl-37032465

ABSTRACT

OBJECTIVES: In the study, we examined the effects of ketamine and extremely low-frequency electromagnetic fields (ELF-EMF) on depression-like behavior, learning and memory, expression of GFAP, caspase-3, p53, BDNF, and NMDA receptor in animals subjected to chronic unpredictable stress (CUS). METHODS: After applying 21 days of chronic unpredictable stress, male rats received intraperitoneal (IP) of ketamine (5 mg/kg) and then were exposed to ELF-EMF (10-Hz, 10-mT exposure conditions) for 3 days (3 h per day) and behavioral assessments were performed 24 h after the treatments. Instantly after the last behavioral test, the brain was extracted for Nissl staining, immunohistochemistry, and real-time PCR analyses. Immunohistochemistry (IHC) was conducted to assess the effect of ketamine and ELF-EMF on the expression of astrocyte marker (glial fibrillary acidic protein, GFAP) in the CA1 area of the hippocampus and medial prefrontal cortex (mPFC). Also, real-time PCR analyses were used to investigate the impacts of the combination of ketamine and ELF-EMF on the expression of caspase3, p53, BDNF, and NMDA receptors in the hippocampus in rats submitted to the CUS procedure. Results were considered statistically significant when p < .05. RESULTS: Our results revealed that the combination of ketamine and ELF-EMF increased depression-like behavior, increased degenerated neurons and decreased the number of GFAP (+) cells in the CA1 area and mPFC, incremented the expression of caspase-3, and reduced the expression of BDNF in the hippocampus but showed no effect on the expression of p53 and NMDA-R. CONCLUSIONS: These results reveal that combining ketamine and ELF-EMF has adverse effects on animals under chronic unpredictable stress (CUS).


Subject(s)
Ketamine , Rats , Male , Animals , Ketamine/pharmacology , Caspase 3 , Depression/etiology , Electromagnetic Fields/adverse effects , Brain-Derived Neurotrophic Factor , Tumor Suppressor Protein p53
SELECTION OF CITATIONS
SEARCH DETAIL