Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 470
Filter
1.
Cancers (Basel) ; 16(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39001539

ABSTRACT

The rise of drug resistance in cancer cells presents a formidable challenge in modern oncology, necessitating the exploration of innovative therapeutic strategies. This review investigates the latest advancements in overcoming drug resistance mechanisms employed by cancer cells, focusing on emerging therapeutic modalities. The intricate molecular insights into drug resistance, including genetic mutations, efflux pumps, altered signaling pathways, and microenvironmental influences, are discussed. Furthermore, the promising avenues offered by targeted therapies, combination treatments, immunotherapies, and precision medicine approaches are highlighted. Specifically, the synergistic effects of combining traditional cytotoxic agents with molecularly targeted inhibitors to circumvent resistance pathways are examined. Additionally, the evolving landscape of immunotherapeutic interventions, including immune checkpoint inhibitors and adoptive cell therapies, is explored in terms of bolstering anti-tumor immune responses and overcoming immune evasion mechanisms. Moreover, the significance of biomarker-driven strategies for predicting and monitoring treatment responses is underscored, thereby optimizing therapeutic outcomes. For insights into the future direction of cancer treatment paradigms, the current review focused on prevailing drug resistance challenges and improving patient outcomes, through an integrative analysis of these emerging therapeutic strategies.

2.
iScience ; 27(6): 110132, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38993482

ABSTRACT

Although up to 80% small cell lung cancer (SCLC) patients' response is good for first-line chemotherapy regimen, most patients develop recurrence of the disease within weeks to months. Here, we report cytostatic effect of leflunomide (Leflu) and teriflunomide (Teri) on SCLC cell proliferation through inhibition of DRP1 phosphorylation at Ser616 and decreased mitochondrial fragmentation. When administered together, Teri and carboplatin (Carbo) act synergistically to significantly inhibit cell proliferation and DRP1 phosphorylation, reduce abundance of intermediates in pyrimidine de novo pathway, and increase apoptosis and DNA damage. Combination of Leflu&Carbo has anti-tumorigenic effect in vivo. Additionally, lurbinectedin (Lur) and Teri potently and synergistically inhibited spheroid growth and depleted uridine and DRP1 phosphorylation in mouse tumors. Our results suggest combinations of Carbo and Lur with Teri or Leflu are efficacious and underscore how the relationship between DRP1/DHODH and mitochondrial plasticity serves as a potential therapeutic target to validate these treatment strategies in SCLC clinical trials.

3.
Transl Lung Cancer Res ; 13(5): 1163-1168, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38854944

ABSTRACT

Background: MET rearrangements are infrequently observed in non-small cell lung cancer (NSCLC). Advanced genomic detection techniques have unveiled such infrequent genomic variations, particularly MET fusions in approximately 0.5% of NSCLC patients. Tyrosine kinase inhibitors (TKIs) have revolutionized the standard of care in lung cancer and more recently a second generation MET TKI tepotinib received Food and Drug Administration (FDA) approval for MET exon 14 alterations in metastatic NSCLC. Despite this, the therapeutic landscape for MET-rearranged NSCLC patients remains significantly unexplored. The aim of our report is to detail a unique case of a patient with metastatic lung adenocarcinoma with a novel HLA-DQB2::MET fusion detected by next-generation sequencing (NGS) following previous treatment resistance. Case Description: A 73-year-old female was initially started on carboplatin, pemetrexed and pembrolizumab with maintenance, but eventually had progression in the left upper lobe (LUL). Upon progression she was enrolled in a clinical trial of a monoclonal antibody with or without a PD-1 inhibitor, but brain metastasis progression was eventually detected by magnetic resonance imaging (MRI) requiring stereotactic radiosurgery (SRS) and a craniotomy. The trial drug was eventually discontinued due to progression and toxicity and NGS on bronchoscopy tissue revealed HLA-DQB2::MET fusion. The patient was initiated on tepotinib and continues with clinical and radiological stable disease for over 12 months. The patient's response to a MET inhibitor, tepotinib, underscores the potential efficacy of selective MET inhibitors for individuals with previously unexplored MET fusions. Conclusions: The positive response to tepotinib of a patient with NSCLC harboring a novel MET-Fusion underscores the importance of the use of comprehensive next-generational sequencing-based panels and highlights the necessity for additional research and clinical exploration of selective MET inhibitors for managing NSCLC with MET rearrangements.

4.
J Clin Med ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929995

ABSTRACT

Nanoengineering has emerged as a progressive method in cancer treatment, offering precise and targeted delivery of therapeutic agents while concurrently reducing overall toxicity. This scholarly article delves into the innovative strategies and advancements in nanoengineering that bridge the gap between clinical practice and research in the field of cancer treatment. Various nanoengineered platforms such as nanoparticles, liposomes, and dendrimers are scrutinized for their capacity to encapsulate drugs, augment drug efficacy, and enhance pharmacokinetics. Moreover, the article investigates research breakthroughs that drive the progression and enhancement of nanoengineered remedies, encompassing the identification of biomarkers, establishment of preclinical models, and advancement of biomaterials, all of which are imperative for translating laboratory findings into practical medical interventions. Furthermore, the integration of nanotechnology with imaging modalities, which amplify cancer detection, treatment monitoring, and response assessment, is thoroughly examined. Finally, the obstacles and prospective directions in nanoengineering, including regulatory challenges and issues related to scalability, are examined. This underscores the significance of fostering collaboration among various entities in order to efficiently translate nanoengineered interventions into enhanced cancer therapies and patient management.

5.
NPJ Precis Oncol ; 8(1): 135, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898200

ABSTRACT

We conducted spatial immune tumor microenvironment (iTME) profiling using formalin-fixed paraffin-embedded (FFPE) samples of 25 KRAS-mutated non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs), including 12 responders and 13 non-responders. An eleven-marker panel (CD3, CD4, CD8, FOXP3, CD68, arginase-1, CD33, HLA-DR, pan-keratin (PanCK), PD-1, and PD-L1) was used to study the tumor and immune cell compositions. Spatial features at single cell level with cellular neighborhoods and fractal analysis were determined. Spatial features and different subgroups of CD68+ cells and FOXP3+ cells being associated with response or resistance to ICIs were also identified. In particular, CD68+ cells, CD33+ and FOXP3+ cells were found to be associated with resistance. Interestingly, there was also significant association between non-nuclear expression of FOXP3 being resistant to ICIs. We identified CD68dim cells in the lung cancer tissues being associated with improved responses, which should be insightful for future studies of tumor immunity.

6.
J Clin Med ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38893049

ABSTRACT

Cancer cells, like all other organisms, are adept at switching their phenotype to adjust to the changes in their environment. Thus, phenotypic plasticity is a quantitative trait that confers a fitness advantage to the cancer cell by altering its phenotype to suit environmental circumstances. Until recently, new traits, especially in cancer, were thought to arise due to genetic factors; however, it is now amply evident that such traits could also emerge non-genetically due to phenotypic plasticity. Furthermore, phenotypic plasticity of cancer cells contributes to phenotypic heterogeneity in the population, which is a major impediment in treating the disease. Finally, plasticity also impacts the group behavior of cancer cells, since competition and cooperation among multiple clonal groups within the population and the interactions they have with the tumor microenvironment also contribute to the evolution of drug resistance. Thus, understanding the mechanisms that cancer cells exploit to tailor their phenotypes at a systems level can aid the development of novel cancer therapeutics and treatment strategies. Here, we present our perspective on a team medicine-based approach to gain a deeper understanding of the phenomenon to develop new therapeutic strategies.

7.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189106, 2024 May.
Article in English | MEDLINE | ID: mdl-38701936

ABSTRACT

Cervical cancer remains a significant global health burden, necessitating innovative approaches for improved diagnostics and personalized treatment strategies. Precision medicine has emerged as a promising paradigm, leveraging biomarkers and molecular targets to tailor therapy to individual patients. This review explores the landscape of emerging biomarkers and molecular targets in cervical cancer, highlighting their potential implications for precision medicine. By integrating these biomarkers into comprehensive diagnostic algorithms, clinicians can identify high-risk patients at an earlier stage, enabling timely intervention and improved patient outcomes. Furthermore, the identification of specific molecular targets has paved the way for the development of targeted therapies aimed at disrupting key pathways implicated in cervical carcinogenesis. In conclusion, the evolving landscape of biomarkers and molecular targets presents exciting opportunities for advancing precision medicine in cervical cancer. By harnessing these insights, clinicians can optimize treatment selection, enhance patient outcomes, and ultimately transform the management of this devastating disease.


Subject(s)
Biomarkers, Tumor , Molecular Targeted Therapy , Precision Medicine , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Molecular Targeted Therapy/methods
8.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791148

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by the absence of the estrogen receptor, progesterone receptor, and receptor tyrosine kinase HER2 expression. Due to the limited number of FDA-approved targeted therapies for TNBC, there is an ongoing need to understand the molecular underpinnings of TNBC for the development of novel combinatorial treatment strategies. This study evaluated the role of the MerTK receptor tyrosine kinase on proliferation and invasion/metastatic potential in TNBC. Immunohistochemical analysis demonstrated MerTK expression in 58% of patient-derived TNBC xenografts. The stable overexpression of MerTK in human TNBC cell lines induced an increase in proliferation rates, robust in vivo tumor growth, heightened migration/invasion potential, and enhanced lung metastases. NanoString nCounter analysis of MerTK-overexpressing SUM102 cells (SUM102-MerTK) revealed upregulation of several signaling pathways, which ultimately drive cell cycle progression, reduce apoptosis, and enhance cell survival. Proteomic profiling indicated increased endoglin (ENG) production in SUM102-MerTK clones, suggesting that MerTK creates a conducive environment for increased proliferative and metastatic activity via elevated ENG expression. To determine ENG's role in increasing proliferation and/or metastatic potential, we knocked out ENG in a SUM102-MerTK clone with CRISPR technology. Although this ENG knockout clone exhibited similar in vivo growth to the parental SUM102-MerTK clone, lung metastasis numbers were significantly decreased ~4-fold, indicating that MerTK enhances invasion and metastasis through ENG. Our data suggest that MerTK regulates a unique proliferative signature in TNBC, promoting robust tumor growth and increased metastatic potential through ENG upregulation. Targeting MerTK and ENG simultaneously may provide a novel therapeutic approach for TNBC patients.


Subject(s)
Cell Proliferation , Triple Negative Breast Neoplasms , c-Mer Tyrosine Kinase , Humans , c-Mer Tyrosine Kinase/metabolism , c-Mer Tyrosine Kinase/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Animals , Female , Mice , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Endoglin/metabolism , Endoglin/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Neoplasm Metastasis , Signal Transduction , Apoptosis/genetics
9.
iScience ; 27(3): 109308, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38482503

ABSTRACT

Organisms as well as cancer cells are adept at adapting to changes in the environment in which they find themselves, by actively adjusting their phenotype. Phenotypic plasticity is a quantitative trait that confers a fitness advantage to the organism by tailoring its phenotype to environmental circumstances. While it is generally held that new traits arise solely from genetic factors, emerging evidence indicates that phenotypic plasticity also plays a critical role both in cancer and evolution. Thus, understanding the mechanisms that underlie phenotypic plasticity can not only provide new insights into organismal evolution and the origin of novelty but can also result in novel strategies and therapeutics to treat cancer.

10.
Cancers (Basel) ; 16(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38254801

ABSTRACT

Head and neck cancers (HNCs) arise from the mucosal lining of the aerodigestive tract and are often associated with alcohol use, tobacco use, and/or human papillomavirus (HPV) infection. Over 600,000 new cases of HNC are diagnosed each year, making it the sixth most common cancer worldwide. Historically, treatments have included surgery, radiation, and chemotherapy, and while these treatments are still the backbone of current therapy, several immunotherapies have recently been approved by the Food and Drug Administration (FDA) for use in HNC. The role of the immune system in tumorigenesis and cancer progression has been explored since the early 20th century, eventually coalescing into the current three-phase model of cancer immunoediting. During each of the three phases-elimination, equilibrium, and escape-cancer cells develop and utilize multiple strategies to either reach or remain in the final phase, escape, at which point the tumor is able to grow and metastasize with little to no detrimental interference from the immune system. In this review, we summarize the many strategies used by HNC to escape the immune system, which include ways to evade immune detection, resist immune cell attacks, inhibit immune cell functions, and recruit pro-tumor immune cells.

11.
Biomolecules ; 13(11)2023 10 28.
Article in English | MEDLINE | ID: mdl-38002269

ABSTRACT

Several studies in the last few years have determined that, in contrast to the prevailing dogma that drug resistance is simply due to Darwinian evolution-the selection of mutant clones in response to drug treatment-non-genetic changes can also lead to drug resistance whereby tolerant, reversible phenotypes are eventually relinquished by resistant, irreversible phenotypes. Here, using KRAS as a paradigm, we illustrate how this nexus between genetic and non-genetic mechanisms enables cancer cells to evade the harmful effects of drug treatment. We discuss how the conformational dynamics of the KRAS molecule, that includes intrinsically disordered regions, is influenced by the binding of the targeted therapies contributing to conformational noise and how this noise impacts the interaction of KRAS with partner proteins to rewire the protein interaction network. Thus, in response to drug treatment, reversible drug-tolerant phenotypes emerge via non-genetic mechanisms that eventually enable the emergence of irreversible resistant clones via genetic mutations. Furthermore, we also discuss the recent data demonstrating how combination therapy can help alleviate KRAS drug resistance in lung cancer, and how new treatment strategies based on evolutionary principles may help minimize or even preclude the emergence of drug resistance.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Drug Resistance, Neoplasm/genetics , Mutation
12.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189026, 2023 11.
Article in English | MEDLINE | ID: mdl-37980945

ABSTRACT

Gynecological cancers including breast, cervical, ovarian, uterine, and vaginal, pose the greatest threat to world health, with early identification being crucial to patient outcomes and survival rates. The application of machine learning (ML) and artificial intelligence (AI) approaches to the study of gynecological cancer has shown potential to revolutionize cancer detection and diagnosis. The current review outlines the significant advancements, obstacles, and prospects brought about by AI and ML technologies in the timely identification and accurate diagnosis of different types of gynecological cancers. The AI-powered technologies can use genomic data to discover genetic alterations and biomarkers linked to a particular form of gynecologic cancer, assisting in the creation of targeted treatments. Furthermore, it has been shown that the potential benefits of AI and ML technologies in gynecologic tumors can greatly increase the accuracy and efficacy of cancer diagnosis, reduce diagnostic delays, and possibly eliminate the need for needless invasive operations. In conclusion, the review focused on the integrative part of AI and ML based tools and techniques in the early detection and exclusion of various cancer types; together with a collaborative coordination between research clinicians, data scientists, and regulatory authorities, which is suggested to realize the full potential of AI and ML in gynecologic cancer care.


Subject(s)
Artificial Intelligence , Genital Neoplasms, Female , Female , Humans , Machine Learning , Genital Neoplasms, Female/diagnosis , Genital Neoplasms, Female/genetics , Breast , Genomics
13.
Sci Adv ; 9(41): eade3816, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37831779

ABSTRACT

Inherent or acquired resistance to sotorasib poses a substantialt challenge for NSCLC treatment. Here, we demonstrate that acquired resistance to sotorasib in isogenic cells correlated with increased expression of integrin ß4 (ITGB4), a component of the focal adhesion complex. Silencing ITGB4 in tolerant cells improved sotorasib sensitivity, while overexpressing ITGB4 enhanced tolerance to sotorasib by supporting AKT-mTOR bypass signaling. Chronic treatment with sotorasib induced WNT expression and activated the WNT/ß-catenin signaling pathway. Thus, silencing both ITGB4 and ß-catenin significantly improved sotorasib sensitivity in tolerant, acquired, and inherently resistant cells. In addition, the proteasome inhibitor carfilzomib (CFZ) exhibited synergism with sotorasib by down-regulating ITGB4 and ß-catenin expression. Furthermore, adagrasib phenocopies the combination effect of sotorasib and CFZ by suppressing KRAS activity and inhibiting cell cycle progression in inherently resistant cells. Overall, our findings unveil previously unrecognized nongenetic mechanisms underlying resistance to sotorasib and propose a promising treatment strategy to overcome resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Humans , Antiviral Agents , beta Catenin/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Drug Resistance, Neoplasm/genetics
14.
Biochem Pharmacol ; 217: 115847, 2023 11.
Article in English | MEDLINE | ID: mdl-37804871

ABSTRACT

Ovarian cancer (OC) is the most prevalent and deadly cancer of the female reproductive system. Women will continue to be impacted by OC-related morbidity and mortality. Despite the fact that chemotherapy with cisplatin is the main component as the first-line anticancer treatment for OC, chemoresistance and unfavorable side effects are important obstacles to effective treatment. Targets for effective cancer therapy are required for cancer cells but not for non-malignant cells because they are expressed differently in cancer cells compared to normal cells. Targets for cancer therapy should preferably be components that already exist in biochemical and signalling frameworks and that significantly contribute to the development of cancer or regulate the response to therapy. RLIP is an important mercapturic acid pathway transporter that is crucial for survival and therapy resistance in cancers, therefore, we examined the role of RLIP in regulating essential signalling proteins involved in relaying the inputs from upstream survival pathways and mechanisms contributing to chemo-radiotherapy resistance in OC. The findings of our research offer insight into a novel anticancer effect of RLIP depletion/inhibition on OC and might open up new therapeutic avenues for OC therapy.


Subject(s)
Ovarian Neoplasms , Humans , Female , Heterografts , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Signal Transduction , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm
15.
JCO Precis Oncol ; 7: e2200445, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37656950

ABSTRACT

PURPOSE: With increased adoption of next-generation sequencing, tailored therapy on the basis of molecular status is being delivered for patients with early-stage resectable non-small-cell lung cancer (NSCLC). The purpose of this narrative review was to focus on recent developments of targeted therapies in the adjuvant and neoadjuvant/adjuvant setting for early-stage disease. METHODS: A systematic search of the MEDLINE/PubMed database was performed, focusing on studies published within the past 10 years. Our search queried "early-stage NSCLC (AND) tyrosine kinase inhibitor (TKI; OR) epidermal growth factor receptor (EGFR; OR) anaplastic lymphoma kinase (ALK)" and was limited only to prospective and ongoing studies. RESULTS: Most studies examining the benefit of targeted therapies in early-stage resectable NSCLC have been for EGFR-TKIs in the adjuvant setting. Currently, only one study, the ADAURA trial of adjuvant osimertinib, has demonstrated an overall survival benefit with the use of an EGFR-TKI in the adjuvant setting. Future work to build on the success of the ADAURA trial is focused on determining the optimal duration of targeted therapies and using biomarkers, such as circulating tumor DNA, to risk-stratify patients and guide maintenance targeted therapy duration. CONCLUSION: The results of several ongoing studies are eagerly awaited regarding the use of targeted therapies in the neoadjuvant/adjuvant setting and for more uncommon or rare mutations such as ALK, ROS proto-oncogene 1, rearranged during transfection, mesenchymal-epithelial transition factor, and B-Raf proto-oncogene V600E. The treatment landscape for early-stage NSCLC harboring actionable mutations is likely to shift dramatically in the upcoming decade.

16.
Clin Lung Cancer ; 24(7): 651-659, 2023 11.
Article in English | MEDLINE | ID: mdl-37714807

ABSTRACT

BACKGROUND AND PURPOSE: The role of stereotactic body radiation therapy (SBRT) in oligoprogressive non-small-cell lung cancer (NSCLC) is controversial. We evaluated whether SBRT in a subset of patients with oligoprogressive or oligorecurrent NSCLC offers a durable response, obviating the need to change systemic therapy. METHODS: A retrospective analysis of 168 NSCLC patients who underwent SBRT for oligoprogressive or oligorecurrent disease was performed. Oligoprogression was defined as progression in ≤5 lesions during or after systemic therapy following an initial complete or partial response. Oligorecurrence was defined as progression while off systemic therapy. Progression-free survival (PFS), overall survival (OS) and time to next treatment or death (TNT-D) were estimated. RESULTS: Median age was 68 years. Sixty-seven percent of patients were on systemic therapy at the time of progression. Progression at the primary site was present in 31% of the patients. The number of sites of metastatic progression was 0 to 2 in 76% and 3 to 5 in 24% of the patients. Two-year OS and PFS were 56% (95%CI 46%-64%) and 14% (95%CI 8%-21%), respectively. Median TNT-D was 9 months (95%CI 6-11). No grade 4 or 5 toxicity was seen. In multivariable analysis, patients with 3 to 5 sites of metastatic progression had worse OS (HR 2.6, 95%CI 1.5-4.3, P < .001) and shorter TNT-D (HR 1.7, 95%CI 1.1-2.5, P = .01) than those with 0 to 2 sites. CONCLUSION: SBRT is a safe and viable treatment option for oligoprogressive and oligorecurrent NSCLC. Patients with 0 to 2 sites had better OS and longer TNT-D compared to those with 3 to 5 lesions.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Humans , Aged , Lung Neoplasms/pathology , Radiosurgery/adverse effects , Retrospective Studies
19.
Bioanalysis ; 15(17): 1095-1107, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37584370

ABSTRACT

We have developed and validated a novel LC-MS/MS method for the simultaneous quantification of LB-100 and its active metabolite, endothall, in human plasma following solid-phase extraction. LB-105 and endothall-D6 were used as internal standards. Chromatographic separation was achieved on a Hypercarb™ column using 5 mM (NH4)2CO3 and 30:70 (v/v) 100 mM (NH4)2CO3:acetonitrile as mobile phases. Detection was performed via positive electrospray ionization mode with multiple reaction monitoring. The assay exhibited linearity in the concentration range of 2.5-500 ng/ml for both analytes. Intra- and inter-assay precision and accuracy were within ±11%. LB-100 and endothall recoveries were 78.7 and 86.7%, respectively. The validated LC-MS/MS method enabled the accurate measurement of LB-100 and endothall in patient samples from an ongoing clinical trial (NCT04560972).


Subject(s)
Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Reference Standards , Reproducibility of Results , Chromatography, High Pressure Liquid/methods
20.
NPJ Precis Oncol ; 7(1): 74, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37567918

ABSTRACT

Aberrantly expressed onco-mucin 16 (MUC16) and its post-cleavage generated surface tethered carboxy-terminal (MUC16-Cter) domain are strongly associated with poor prognosis and lethality of pancreatic (PC) and non-small cell lung cancer (NSCLC). To date, most anti-MUC16 antibodies are directed towards the extracellular domain of MUC16 (CA125), which is usually cleaved and shed in the circulation hence obscuring antibody accessibility to the cancer cells. Herein, we establish the utility of targeting a post-cleavage generated, surface-tethered oncogenic MUC16 carboxy-terminal (MUC16-Cter) domain by using a novel chimeric antibody in human IgG1 format, ch5E6, whose epitope expression directly correlates with disease severity in both cancers. ch5E6 binds and interferes with MUC16-associated oncogenesis, suppresses the downstream signaling pFAK(Y397)/p-p70S6K(T389)/N-cadherin axis and exert antiproliferative effects in cancer cells, 3D organoids, and tumor xenografts of both PC and NSCLC. The robust clinical correlations observed between MUC16 and N-cadherin in patient tumors and metastatic samples imply ch5E6 potential in targeting a complex and significantly occurring phenomenon of epithelial to mesenchymal transition (EMT) associated with disease aggressiveness. Our study supports evaluating ch5E6 with standard-of-care drugs, to potentially augment treatment outcomes in malignancies inflicted with MUC16-associated poor prognosis.

SELECTION OF CITATIONS
SEARCH DETAIL