Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Language
Publication year range
1.
Materials (Basel) ; 15(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36234016

ABSTRACT

Since their introduction in the early decades of the 20th century, fluorescent pigments have found progressively wider applications in several fields. Their chemical composition has been optimized to obtain the best physical properties, but is not usually disclosed by the manufacturers. Even the other class of luminescent pigments, namely the phosphorescent ones, is now produced industrially. The peculiar optical properties of these pigments have attracted more and more the attention of famous artists since the middle of the last century. The Italian Black Light Art movement exploits the possibility of conveying different aesthetical messages depending on the kind of radiation (UV or visible) with which the artwork is illuminated. In the present work, a non-invasive in-situ investigation based on Raman, fluorescence, and visible-reflectance spectroscopies was performed on a series of Black Light Art paintings exhibited in Milan (Italy) in 2017, succeeding in the identification of the materials used by the artists. In particular, the use of both fluorescent and phosphorescent pigments, alone or combined with conventional synthetic organic pigments, has been recognized.

2.
Analyst ; 142(24): 4801-4811, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29168522

ABSTRACT

This paper is aimed at demonstrating the potentiality of high resolution Attenuated Total Reflection Fourier Transform Infrared micro-mapping (micro-ATR-FTIR) to reconstruct the images of micrometric multi-layered systems. This method can be an effective analytical alternative when the layer thickness requires high lateral resolution, and fluorescence or thermal effects prevent the deployment of conventional analytical techniques such as micro-Raman spectroscopy. This study demonstrates the high micro-ATR-FTIR setup performances in terms of lateral resolution, spectral quality and chemical image contrast using a new laboratory instrument equipped with a single element detector. The method has been first validated on mock-ups and then successfully applied on cross-sectional samples from real artworks: Leonardo da Vinci's mural painting, characterised by a few micrometers thin sequence of organic and inorganic layers, and an outdoor marble statue, with a complex sequence of decay products on its surface. This study paves the way to a new investigation modality of micrometric systems, combining high lateral resolution with excellent spectral quality, essential in the field of Cultural Heritage as well as in the wider area of materials and forensic sciences.

3.
Analyst ; 141(15): 4599-607, 2016 Aug 07.
Article in English | MEDLINE | ID: mdl-27273377

ABSTRACT

We present the first validation and application of portable Sequentially Shifted Excitation (SSE) Raman spectroscopy for the survey of painted layers in art. The method enables the acquisition of shifted Raman spectra and the recovery of the spectral data through the application of a suitable reconstruction algorithm. The technique has a great potentiality in art where commonly a strong fluorescence obscures the Raman signal of the target, especially when conventional portable Raman spectrometers are used for in situ analyses. Firstly, the analytical capability of portable SSE Raman spectroscopy is critically discussed using reference materials and laboratory specimens, comparing its results with other conventional high performance laboratory instruments (benchtop FT-Raman and dispersive Raman spectrometers with an external fiber optic probe); secondly, it is applied directly in situ to study the complex polychromy of Italian prestigious terracotta sculptures of the 16(th) century. Portable SSE Raman spectroscopy represents a new investigation modality in art, expanding the portfolio of non-invasive, chemically specific analytical tools.

4.
Appl Spectrosc ; 69(2): 222-9, 2015.
Article in English | MEDLINE | ID: mdl-25587824

ABSTRACT

Silk embroideries and cotton grounds of ancient Caucasian (Kaitag) textiles were analyzed in situ by a portable Fourier transform infrared (FT-IR) spectrometer equipped with a reflection module. Differently colored areas were analyzed for the purpose of identifying the dyes fixed on the fibers. The spectra so obtained were elaborated by calculating the corresponding second derivative, and a library search was then performed using a database including the second derivative spectra of a large range of historical dyes and the corresponding undyed fibers. The results presented here suggest that this technique, combined with the library search method, has a good capability of recognizing natural dyes on both types of ancient textile fibers, in an entirely non-destructive way.

6.
J Phys Chem A ; 113(34): 9418-23, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19655774

ABSTRACT

We present here a "proof of concepts" experiment that has been realized to show that time-dependent phenomena can be successfully studied in the terahertz region in a non pump-probe configuration. We have built-up an original analytical setup that has allowed following the evaporation of a deuterated water droplet cast on a CVD diamond substrate simultaneously in the near-middle infrared region and in the terahertz range. We have used a synchrotron light source in the terahertz region and a conventional thermal source in the infrared range. The results demonstrate that it is possible to study time-dependent phenomena simultaneously in the middle and terahertz ranges monitoring the entire chemical-physical process that occurs in the time domain of minutes.

SELECTION OF CITATIONS
SEARCH DETAIL