Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters








Publication year range
1.
Int J Biol Macromol ; 277(Pt 3): 134394, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094858

ABSTRACT

Microcrystalline cellulose (MCC) is a crucial component in various industries, including pharmaceuticals, culinary, and cosmetics. The growing demand for MCC has spurred research into extraction methods. This study focused on extracting MCC from Ficus benghalensis using acid hydrolysis to convert the alpha-cellulose content of its leaves into MCC. The solvent used in this process was recyclable for further use. The extracted MCC was characterized by its physicochemical properties, including density, yield percentage, and structural characteristics. The yield was approximately 39.68 %, and the density was low at 1.518 g/cm3, making it suitable for filler applications. Fourier transform spectroscopy and UV-visible analysis identified functional groups of cellulose. X-ray diffraction analysis revealed a crystallite size of 1.560 nm and a crystallinity index of 66.43 %, indicating suitability for related applications. ImageJ determined a mean particle size of 36.545 µm, while scanning electron microscopy showed distinct surface orientations. Atomic force microscopy revealed surface roughness, root mean square, ten-point average roughness, skewness, and kurtosis. Elemental analysis indicated high concentrations of carbon (20.1 %) and oxygen (34 %). Based on these physicochemical features, the extracted MCC could be a valuable source for applications such as filler in reinforcement technology and coating material in pharmaceutical products.


Subject(s)
Cellulose , Ficus , Plant Leaves , Cellulose/chemistry , Cellulose/isolation & purification , Ficus/chemistry , Plant Leaves/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Hydrolysis
2.
Heliyon ; 10(13): e33641, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040382

ABSTRACT

The present surge in environmental consciousness has pushed for the use of biodegradable plasticizers, which are sustainable and abundant in plant resources. As a result of their biocompatibility and biodegradability, Calotropis gigantiea leaf plasticizers (CLP) serve as viable alternatives to chemical plasticizers. First time, the natural plasticizers from the Calotropis leaves were extracted for this study using a suitable chemical approach that was also environmentally friendly. The XRD results showed a reduced crystallinity index of 20.2 % and a crystalline size of 5.3 nm, respectively. TGA study revealed that the CLP has good thermal stability (244 °C). Through FT-IR study, the existence of organic compounds in CLP can be investigated by key functional groups such as alcohol, amine, amide, hydrocarbon, alkene, aromatic, etc. Further the presence of alcoholic, amino, and carboxyl constituents was confirmed by UV investigation. SEM, EDAX analysis, and AFM are used to examine the surface morphology of the isolated plasticizer. SEM pictures reveal rough surfaces on the CLP surface pores, which makes them suitable for plasticizing new bioplastics with improved mechanical properties. Poly (butylene adipate-co-terephthalate) (PBAT), a biodegradable polymer matrix, was used to investigate the plasticization impact after the macromolecules were characterised. The biofilm PBAT/CLP had a thickness of 0.8 mm. In addition, the reinforcement interface was examined using scanning electron microscopy. When CLP is loaded differently in PBAT, the tensile strength and young modulus change from 15.30 to 24.60 MPa and from 137 to 168 MPa, respectively. CLP-reinforced films demonstrated better surface compatibility and enhanced flexibility at a loading of 2 % when compared to pure PBAT films. Considering several documented characteristics, CLP may prove to be an excellent plasticizer for resolving environmental issues in the future.

3.
Int J Biol Macromol ; 270(Pt 1): 132392, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754681

ABSTRACT

The most likely materials for use in packaging are plastics. A lot of synthetic polymers are harming the environment. A plasticizer is required for all polymers to improve their characteristics and workability. The plasticizers come in liquid form and are also derived from fossil fuels, which are harmful to the environment. Producing functional and affordable biopolymer for packaging applications is a difficult task nowadays. The preparation of biofilm for packaging using biopolymer and bioplasticizer is the main aim of this work. The biopolymer poly L-lactic acid (PLA) is used, and the bio plasticizer is extracted from Pedalium murex plant. Chemical and mechanical methods are used to extract the plasticizer. Plasticization of polylactic acid biopolymer was done using the extracted plasticizer at additions of 1 %, 2 %, 3 %, 4 %, and 5 %. FT-IR spectroscopy, X-ray diffraction spectroscopy, and surface roughness values are used to characterise the prepared biofilms. Scanning electron spectroscopy pictures are utilised to evaluate the morphological orientation of the biofilms. Strawberries packed with biofilms are used to evaluate the barrier properties of biofilms using UV spectroscopy analysis. Thermal degradation behaviour is investigated using thermo gravimetric analysis. We examined the mechanical characteristics, such as tensile strength, elongation modulus, and elongation break percentage. The plasticizing effect of the plasticizer raises the elongation break percentage while decreasing the tensile strength and modulus. For 2 % plasticizer addition the elongation break increases and the tensile not much affected. To demonstrate biodegradability and microbial resistance, the soil degradation behaviour and antimicrobial activities were examined.


Subject(s)
Biofilms , Food Packaging , Plasticizers , Polyesters , Polyesters/chemistry , Plasticizers/chemistry , Food Packaging/methods , Biofilms/drug effects , Fruit/chemistry , Biopolymers/chemistry , Biopolymers/pharmacology , Tensile Strength , Spectroscopy, Fourier Transform Infrared
4.
3 Biotech ; 14(4): 110, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38486820

ABSTRACT

The current growing environmental awareness has forced the use of biodegradable plasticizers, which are sustainable and abundant in plant resources. Rose petal plasticizers (RPP) act as an actual substitute for chemical plasticizers in this situation as they are biocompatible and biodegradable. Chemical procedures like amination, alkalization, and surface catalysis are used to extract the natural emollients from rose petals. XRD, FT-IR, and UV studies were used to understand the characteristics of the rose petal plasticizer. Based on the XRD data, the RPP's crystallinity size (CS) and crystallinity index (CI) values were determined to be 9.36 nm and 23.87%, respectively. The surface morphology of the isolated plasticizer is investigated using SEM, EDAX analysis and AFM. RPP surface pores with rough surfaces are visible in SEM images, which make them appropriate for plasticizing novel bioplastics with superior mechanical qualities. The plasticizer's heat degradation behaviour is investigated using thermogravimetric and differential thermogram analysis curves. Following the characterization of the synthesised molecules, the plasticization effect was examined using a biodegradable polymer matrix called poly (butylene adipate-co-terephthalate) (PBAT). The reinforcement interface was also examined using scanning electron microscopy analysis. RPP-reinforced films demonstrated greater flexibility and superior surface compatibility at a 5% loading compared to PBAT-only films. Based on a number of reported features, RPP could be a great plasticizer to address future environmental problems.

5.
Sci Rep ; 14(1): 1693, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38242914

ABSTRACT

The present work examines the physical, thermal tensile, and chemical properties of wood skin fibers obtained from second generation Bitter Albizia (BA) tree skin. Chemical characterization of BA fibers showed the presence of various chemical contents such as cellulose of 74.89 wt. %, hemicellulose of 14.50 wt. %, wax of 0.31 wt. %, lignin of 12.8 wt. %, moisture of 11.71 wt. %, and ash of 19.29 wt. %. The density of BA fibers (BAFs) was showed 1285 kg/m3. XRD analysis of BAFs showed a crystallinity index (CI) of 57.20% and size of crystallite of 1.68 nm. Tensile strength and strain to failure of BAFs examined through tensile test were 513-1226 MPa and 0.8-1.37% respectively. TGA portrayed the thermal steadiness of BAFs as 339 °C with 55.295 kJ/mol kinetic activation energy, its residual mass was 23.35% at 548 °C. BAFs with high CI, less wax content, and better tensile strength make more suitable for making polymer matrix composites. SEM images of the BAFs surface depicted that the fiber outer surface has more rough which shows that they can contribute to hige fiber-matrix adhesion during composites preparation.


Subject(s)
Albizzia , Cellulose , Cellulose/chemistry , Trees , Lignin/chemistry , Polymers/chemistry
6.
Int J Biol Macromol ; 261(Pt 2): 129771, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286386

ABSTRACT

Plasticizers are active ingredients added to the polymer to increase its workability. Since synthetic plasticizer is not ecofriendly and toxic in nature, it is a real cause for concern. On this basis, our study focuses on plasticizer extraction from plant-based resources. In this research work, Thespesia populnea leaves are utilized for the isolation of biological macromolecules with a plasticizing effect for biofilm applications. This extraction process is done through solvent extraction, amination, slow pyrolysis, and surface catalysis process. The physico-chemical and microstructural characterization of novel plasticizer particles were studied for the first time. The lower crystallinity index and crystalline size obtained from X-ray diffraction is 50.08 % and 20.45 nm respectively. Energy dispersive spectroscopy, particle sizer analysis, atomic force microscopy, and scanning electron microscopy are used to assess surface morphology of this plasticizer. The thermogram and differential thermal analysis curves give the information about degradation behavior of plasticizers and their thermal stability. The glass transition temperature of the extracted plasticizer is 60.56 °C. The plasticizing effect of the plasticizer is studied through film fabrication of polylactic acid which was blended with the extracted plasticizer. The mechanical property of biofilm was improved with the addition of plasticizer. The elongation break percentage (for 5 % plasticizer 46.12 %) was increased compared to others with moderate tensile strength. However, the tensile and elongation modulus decreases with the increase of plasticizer content. The crystallinity of the PLA film was improved after the plasticization. The thermal stability also increased with 3 % addition of the plasticizer. The isolated plasticizer was soluble in water and its molecular weight ≈380.


Subject(s)
Plasticizers , Polyesters , Plasticizers/chemistry , Polyesters/chemistry , Polymers/chemistry , Water/chemistry
7.
Int J Biol Macromol ; 254(Pt 1): 127687, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37890740

ABSTRACT

The exploration of potential bio-fillers for bio-film application is a promising approach to ensure biodegradable, eco-friendly, good-quality materials with high-performance applications. This is a comprehensive study executed to establish the utility of an agro-waste Tamarindus indica seeds for microcrystalline cellulose production and to assess its feasibility for biofilm fabrication. The extraction was carried out through consecutive chemical-mediated alkalization, acid hydrolysis and bleaching. The isolated microcrystalline cellulose from Tamarindus indica seeds (TSMCC) was characterized through chemical, thermal and morphological characterization to validate the cellulose contribution, thermal resistance, and compatibility of the material. The physical parameters as density and yield percentage were assessed to evaluate its light-weight utility and economic productivity. These examinations revealed that TSMCC has good specific properties such as high cellulose content (90.57 %), average density (1.561 g/cm3), feasible average roughness (12.161 nm), desired particle size (60.40 ± 21.10 µm), good crystallinity (CI-77.6 %) and thermal stability (up to 230 °C); which are worthwhile to consider TSMCC for bio-film formulation. Subsequently, bio-films were formulated by reinforcing TSMCC in polylactic acid (PLA) matrix and the mechanical properties of the bio-films were then studied to establish the efficacy of TSMCC. It is revealed that the properties of pure PLA film increased after being incorporated with TSMCC, where 5 %TSMCC addition showed greater impact on crystalline index (26.16 % to 39.62 %), thermal stability (333oc to 389 °C), tensile strength (36.11 ± 2.90 MPa to 40.22 ± 3.22 MPa) and modulus (2.62 ± 0.55GPa to 4.15 ± 0.53GPa). In light of all promising features, 5 % TSMCC is recommended as a potential filler reinforcement for the groundwork of good quality bio-films for active packaging applications in future.


Subject(s)
Tamarindus , Tamarindus/chemistry , Cellulose/chemistry , Polyesters/chemistry , Seeds/chemistry
8.
Int J Biol Macromol ; 253(Pt 5): 127237, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37804890

ABSTRACT

Lignocellulosic fiber-reinforced polymer composites are the most extensively used modern-day materials with low density and better specific strength specifically developed to render better physical, mechanical, and thermal properties. Synthetic fiber-reinforced composites face some serious issues like low biodegradability, non-environmentally friendly, and low disposability. Lignocellulosic or natural fiber-reinforced composites, which are developed from various plant-based fibers and animal-based fibers are considered potential substitutes for synthetic fiber composites because they are characterized by lightweight, better biodegradability, and are available at low cost. It is very much essential to study end-of-life (EoL) conditions like biodegradability for the biocomposites which occur commonly after their service life. During biodegradation, the physicochemical arrangement of the natural fibers, the environmental conditions, and the microbial populations, to which the natural fiber composites are exposed, play the most influential factors. The current review focuses on a comprehensive discussion of the standards and assessment methods of biodegradation in aerobic and anaerobic conditions on a laboratory scale. This review is expected to serve the materialists and technologists who work on the EoL behaviour of various materials, particularly in natural fiber-reinforced polymer composites to apply these standards and test methods to various classes of biocomposites for developing sustainable materials.


Subject(s)
Lignin , Plant Structures , Animals , Biodegradation, Environmental , Polymers
9.
Int J Biol Macromol ; 217: 398-406, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35843393

ABSTRACT

The desire of producing marketable green bio-composites displaying good functional properties has increased. Biodegradable composites are a subject of interest as they respond to ecological concerns. In this study, an eco-friendly alkali-laccase modification was used to improve the interfacial adhesion of mukwa wood fiber and polylactic acid (PLA) matrix. The untreated and treated mukwa-PLA composites were fabricated via extrusion and compression molding technique and investigated. The mukwa wood fibers and mukwa-PLA composites were characterized by chemical composition, crystallite size, Fourier transform infrared spectroscope (FTIR), mechanical properties, and scanning electron microscope (SEM) respectively. The cellulose content was found to increase, while the hemicellulose, lignin, and extractives reduced after the surface modifications. The alkali-laccase, laccase, and alkali modifications increased the tensile strength of the untreated/PLA composites by 12.3 %, 5.2 %, and 3.8 % respectively. The flexural strength of the composites reached a maximum of 95.1 MPa following the alkali-laccase treatment. The alkali-laccase treated composites showed increased impact strength of 53.9 % on the untreated/PLA composites. Good correlations between the crystallite size and the mechanical properties were reported, with the highest R-square (R2) value of 1 found between the impact strength and crystallite size. The modifications strengthened the interaction between mukwa and PLA as more voids, fiber pull-outs, and debonding characteristics were observed on SEM microstructures of untreated/PLA.


Subject(s)
Laccase , Pterocarpus , Alkalies , Polyesters/chemistry
10.
Int J Biol Macromol ; 154: 329-338, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32179114

ABSTRACT

In a world that canopies numerous opportunities to advance towards a green sustainable life, biopolymer development offers a platform that fits into the paradigm of achieving an eco-friendly environment whilst reducing reliance on the scarce fossil fuel elements for the fabrication of day-to-day products. Today's technological improvements have aided biopolymer end-products to escalate to higher purposes and soon may have their performance level in par with the petroleum-based synthetic polymers. The motive of this paper is to shimmer light on some aspects of biopolymers that include its classes, properties, composites and applications. Depending on the type of class on the basis of various categories, many enthralling chemistries of polymer composition can be substantiated. Essential properties can imparted to the ensuing biopolymer by altering its chemical configuration and method of synthesis while also focusing on its functional purpose. Nowadays, biopolymer composites blend qualities of one biopolymer with another to acquire an enhanced component that showcases unique explicit attributes. There are several techniques to process biopolymer composites, of which in-situ, infiltration and electrospinning methods have captured considerable limelight. Biopolymers and its composites have embarked captivating impressions in regions of biomedical, packaging, agricultural and automotive applications. Although their efficacy is yet to reach their fossil fuel counterparts, biopolymers have laid a distinguishing mark that will continue to inspire creation of novel substances for many years to come.


Subject(s)
Biopolymers/chemistry , Chemical Phenomena , Nanocomposites/chemistry , Product Packaging
11.
Int J Biol Macromol ; 150: 793-801, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32068059

ABSTRACT

In this current research, the change in properties of alkali treatment on the physicochemical, structural, thermal and surface morphological properties of Calotropis gigantea fruit bunch (CGFB) fibers are investigated. The alkali-treatment was discovered to reduce the amorphous contents and removed the non-cellulosic components which were inveterate by the FTIR analysis. The X-ray diffraction pattern showed that the crystallinity index of the alkali-treated CGFB fibers was fairly higher than raw fibers. Thermal degradability and stability of alkali-treated Calotropis gigantea fruit bunch fibers were more than that of the untreated fiber. Scanning electron microscopy and Atomic force microscopy images showed the partially roughened surface of the fiber due to the removal of non-cellulosic elements and surface impurities during alkali treatment.


Subject(s)
Calotropis/chemistry , Cellulose/chemistry , Fruit/chemistry , Hot Temperature , Tensile Strength
12.
Int J Biol Macromol ; 135: 69-76, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31116962

ABSTRACT

The current study is motivated by the strict environmental regulations regarding the utilization and consumption of ecofriendly materials. In this context, the aim of this study has been to prepare and characterize different date palm tree (Phoenix dactylifera L.) fibers processed through the conventional water retting method. The chemical, elemental, crystallinity, thermal and morphological characterization of trunk (DPTRF), leaf stalk (DPLST), sheath or leaf sheath (DPLSH) and fruit bunch stalk (DPFBS) fibers was carried out. Chemical analysis revealed that the four types of date palm fibers display noteworthy differences in the content of cellulose, hemicellulose and lignin. Also, the amount of calcium is relatively high in all the date palm fibers; besides this, DPTRF exhibited 69.2% crystallinity, which is lower than that of DPLSH with 72.4% crystallinity. Moreover, DPLST and DPFBS fibers are more thermally stable (higher thermal degradation temperature) than DPTRF and DPLSH samples. Morphological analysis revealed that the fracture surface of DPFBS was relatively rougher, which would probably lead to increased bonding strength with polymers in composites. Overall, we conclude that DPFBS would be promising alternative sustainable and biomass material for the isolation of respective cellulose nanofibers and cellulose nanocrystals as potential reinforcement in polymer composites.


Subject(s)
Biological Products/analysis , Biological Products/chemistry , Phoeniceae/chemistry , Plant Components, Aerial/chemistry , Polymers/chemistry , Chemical Phenomena , Lignin/chemistry , Phytochemicals/chemistry , Polysaccharides/chemistry , Spectrum Analysis , Thermogravimetry
13.
Int J Biol Macromol ; 125: 99-108, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30528990

ABSTRACT

The aim of this study is to investigate natural cellulosic fibers extracted from Tridax procumbens plants. The obtained fibers were alkali treated for their effective usage as reinforcement in composites. The physical, chemical, crystallinity, thermal, wettability and surface characteristics were analyzed for raw, and alkali treated Tridax procumbens fibers (TPFs). The test results conclude that there was an increase in cellulose content with a reduction in hemicellulose, lignin, and wax upon alkali treatment. This enhanced the thermal stability, tensile strength, crystallinity, and surface roughness characteristics. The contact angle was also lesser for treated TPFs which prove its better wettability with the liquid phase. The Weibull distribution analysis was adopted for the analysis of the fiber diameter and tensile properties. Thus the considerable improvement in the properties of alkali treated TPFs would be worth for developing high-performance polymer composites.


Subject(s)
Alkalies/chemistry , Asteraceae/chemistry , Cellulose/chemistry , Chemical Phenomena , Liquid-Liquid Extraction , Spectrum Analysis , Tensile Strength , Thermogravimetry
14.
Int J Biol Macromol ; 120(Pt A): 578-586, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30165147

ABSTRACT

This study focuses on the synthesis and characterization of CNF obtained from ramie fibers reinforced with nano PCC tapioca starch hybrid composites. CNF-ramie was prepared by using chemical-ultrasonication process, while the nano-composites were made by utilizing a casting solution and glycerol as plasticizers. Physical, mechanical, and thermal properties are characterized using SEM, FTIR, XRD, TGA, and the morphology of composite samples have been analyzed through SEM. The results show that the CS/4CNF/6PCC sample has the highest tensile strength and crystallinity index of 12.84 Mpa and 30.76% respectively. The addition of CNF-ramie and PCC in nanocomposites has increased moisture absorption, crystallinity, and thermal stability properties. The SEM micrographs indicate that the CNF-ramie is bound in a matrix and the PCC is weakly bound in the tapioca starch matrix mainly due to the calcium clumps in the matrix.


Subject(s)
Cellulose/chemistry , Manihot/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Starch/chemistry , Calcium/chemistry , Glycerol/chemistry , Humans , Materials Testing , Nanocomposites/ultrastructure , Nanofibers/ultrastructure , Plasticizers/chemistry , Sonication , Tensile Strength
15.
Carbohydr Polym ; 181: 650-658, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29254019

ABSTRACT

The exploration of new natural fibers in the field of polymer composites can contribute to increase the invention of natural reinforcements and expand their use in possible applications. In the present work, the physico-chemical, thermal, tensile and morphological properties of Furcraea foetida (FF) fiber are presented for the first time. Chemical analysis results shows that FF has relatively higher cellulose (68.35%) with lower hemicelluloses (11.46%) and lignin (12.32%). Structural analysis of FF was conducted by Fourier transform infrared and 13C (CP-MAS) nuclear magnetic resonance spectroscopy. X-ray diffraction (XRD) analysis evidenced that FF has crystallinity index of 52.6% with crystalline size of 28.36nmThe surface morphology of FF was investigated by scanning electron microscopy (SEM), energy dispersive X-ray micro analyzer (EDX) and atomic force microscopy (AFM). The thermogravimetric analysis (TGA) reveals thermal constancy of the fiber upto 320.5°C with the kinetic activation energy of 66.64kJ/mol, which can be used as reinforcements in thermoplastic green composite whose working temperatures is below 300°C. The FF results were compared with those of other natural fibers, and indicated as a suitable alternative source for composite manufacture.

SELECTION OF CITATIONS
SEARCH DETAIL