Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
J Low Temp Phys ; 216(1-2): 104-111, 2024.
Article in English | MEDLINE | ID: mdl-39070769

ABSTRACT

We present the optical characterization of two-scale hierarchical phased-array antenna kinetic inductance detectors (KIDs) for millimeter/submillimeter wavelengths. Our KIDs have a lumped-element architecture with parallel plate capacitors and aluminum inductors. The incoming light is received with a hierarchical phased array of slot dipole antennas, split into 4 frequency bands (between 125 GHz and 365 GHz) with on-chip lumped-element band-pass filters, and routed to different KIDs using microstriplines. Individual pixels detect light for the 3 higher-frequency bands (190-365 GHz), and the signals from four individual pixels are coherently summed to create a larger pixel detecting light for the lowest frequency band (125-175 GHz). The spectral response of the band-pass filters was measured using Fourier transform spectroscopy (FTS), the far-field beam pattern of the phased-array antennas was obtained using an infrared source mounted on a 2-axis translating stage, and the optical efficiency of the KIDs was characterized by observing loads at 294 K and 77 K. We report on the results of these three measurements.

2.
Appl Opt ; 57(18): 5196-5209, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-30117982

ABSTRACT

Although high-resistivity, low-loss silicon is an excellent material for terahertz transmission optics, its high refractive index necessitates an antireflection treatment. We fabricated a wide-bandwidth, two-layer antireflection treatment by cutting subwavelength structures into the silicon surface using multi-depth deep reactive-ion etching (DRIE). A wafer with this treatment on both sides has <-20 dB (<1%) reflectance over 187-317 GHz at a 15° angle of incidence in TE polarization. We also demonstrated that bonding wafers introduce no reflection features above the -20 dB level (also in TE at 15°), reproducing previous work. Together these developments immediately enable construction of wide-bandwidth silicon vacuum windows and represent two important steps toward gradient-index silicon optics with integral broadband antireflection treatment.

SELECTION OF CITATIONS
SEARCH DETAIL